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5.

(a) By Theorem I, any integer root must be a divisor of 6; thus there are six candidates: ±1,
±2, and ±3. Among these, −1, 12 , and −

1
4

(b) By Theorem II, any rational root r/s must have r being a divisor of −1 and s being a
divisor of 8. The r set is {1,−1}, and the s set is {1,−1, 2,−2, 4,−4, 8,−8}; these give
us eight root candidates: ±1,±1

2 ,±
1
4 , and ±

1
8 . Among these, −1, 2, and 3 satisfy the

equation, and they constitute the three roots.

(c) To get rid of the fractional coefficients, we multiply every term by 8. The resulting

equation is the same as the one in (b) above.

(d) To get rid of the fractional coefficients, we multiply every term by 4 to obtain

4x4 − 24x3 + 31x2 − 6x− 8 = 0

By Theorem II, any rational root r/s must have r being a divisor of −8 and s being a
divisor of 4. The r set is {±1,±2,±4,±8}, and the s set is {±1,±2,±4}; these give us
the root candidates ±1,±1

2 ,±
1
4 ,±2,±4,±8. Among these,

1
2 , −

1
2 , 2, and 4 constitute the

four roots.

6.

(a) The model reduces to P 2 + 6P − 7 = 0. By the quadratic formula, we have P ∗1 = 1 and
P ∗2 = −7, but only the first root is acceptable. Substituting that root into the second or
the third equation, we find Q∗ = 2.

(b) The model reduces to 2P 2−10 = 0 or P 2 = 5 with the two roots P ∗1 =
√
5 and P ∗2 = −

√
5.

Only the first root is admissible, and it yields Q∗ = 3.

7. Equation (3.7) is the equilibrium stated in the form of ”the excess supply be zero.”

Exercise 3.4

1. N/A
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2.

P ∗1 =
(a2 − b2)(α0 − β0)− (a0 − b0)(α2 − β2)

(a1 − b1)(α2 − β2)− (a2 − b2)(α1 − β1)

P ∗2 =
(a0 − b0)(α1 − β1)− (a1 − b1)(α0 − β0)

(a1 − b1)(α2 − β2)− (a2 − b2)(α1 − β1)

3. Since we have

c0 = 18 + 2 = 20 c1 = −3− 4 = −7 c2 = 1

γ0 = 12 + 2 = 14 γ1 = 1 γ2 = −2− 3 = −5
it follows that

P ∗1 =
14+100
35−1 = 57

17 = 3
6
17 and P ∗2 =

20+98
35−1 =

59
17 = 3

8
17

Substitution into the given demand or supply function yields

Q∗1 =
194
17 = 11

7
17 and Q∗2 =

143
17 = 8

7
17

Exercise 3.5

1.

(a) Three variables are endogenous: Y, C, and T.

(b) By substituting the third equation into the second and then the second into the first, we

obtain

Y = a− bd+ b(1− t)Y + I0 +G0

or

[1− b(1− t)]Y = a− bd+ I0 +G0

Thus

Y ∗ =
a− bd+ I0 +G0
1− b(1− t)

Then it follows that the equilibrium values of the other two endogenous variables are

T ∗ = d+ tY ∗ =
d(1− b) + t(a+ I0 +G0)

1− b(1− t)

and

C∗ = Y ∗ − I0 −G0 =
a− bd+ b(1− t)(I0 +G0)

1− b(1− t)

11
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2.

(a) The endogenous variables are Y, C, and G.

(b) g = G/Y = proportion of national income spent as government expenditure.

(c) Substituting the last two equations into the first, we get

Y = a+ b(Y − T0) + I0 + gY

Thus

Y ∗ =
a− bT0 + I0
1− b− g

(d) The restriction b+ g 6= 1 is needed to avoid division by zero.

3. Upon substitution, the first equation can be reduced to the form

Y − 6Y 1/2 − 55 = 0

or

w2 − 6w − 55 = 0 (where w = Y 1/2)

The latter is a quadratic equation, with roots

w∗1 , w
∗
2 =

∙
1

2
6± (36 + 220)1/2

¸
= 11, −5

From the first root, we can get

Y ∗ = w∗21 = 121 and C∗ = 25 + 6(11) = 91

On the other hand, the second root is inadmissible because it leads to a negative value for C:

C∗ = 25 + 6(−5) = −5

12
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CHAPTER 4

Exercise 4.1

1.

Qd −Qs = 0

Qd +bP = a

Qs −dP = −c

Coeffi cient Matrix:⎡⎢⎢⎢⎣
1 −1 0

1 0 b

0 1 −d

⎤⎥⎥⎥⎦
Vector of Constants:⎡⎢⎢⎢⎣

0

a

−c

⎤⎥⎥⎥⎦

2.
Qd1 −Qs1 = 0

Qd1 −a1P1 −a2P2 = a0

Qs1 −b1P1 −b2P2 = b0

Qd2 −Qs2 = 0

Qd2 −α1P1 −α2P2 = α0

Qs2 −β1P1 −β2P2 = β0

Coeffi cient matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0

1 0 0 0 −a1 −a2
0 1 0 0 −b1 −b2
0 0 1 −1 0 0

0 0 1 0 −α1 −α2
0 0 0 1 −β1 −β2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Variable vector:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qd1

Qs1

Qd2

Qs2

P1

P2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Constant vector:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

a0

b0

0

α0

β0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. No, because the equation system is nonlinear

4.

Y − C = I0 +G0

−bY + C = a

The coefficient matrix and constant vector are⎡⎣ 1 −1
−b 1

⎤⎦ ⎡⎣ I0 +G0

a

⎤⎦
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5. First expand the multiplicative expression (b(Y − T ) into the additive expression bY − bT so
that bY and −bT can be placed in separate columns. Then we can write the system as

Y −C = I0 +G0

−bY +bT +C = a

−tY +T = d

Exercise 4.2

1. (a)

⎡⎣ 7 3

9 7

⎤⎦ (b)

⎡⎣ 1 4

0 −8

⎤⎦ (c)

⎡⎣ 21 −3
18 27

⎤⎦ (d)

⎡⎣ 16 22

24 −6

⎤⎦
2.

(a) Yes AB =

⎡⎢⎢⎢⎣
28 64

6 0

13 8

⎤⎥⎥⎥⎦. No, not conformable.

(b) Both are defined, but BC =

⎡⎣ 14 4

69 30

⎤⎦ 6= CB =
⎡⎣ 20 16

21 24

⎤⎦

3. Yes. BA =

⎡⎢⎢⎢⎣
−15 +

12
10 0 −35 +

6
10

−3 + 1
5 +

28
10 1 −2 + 3

5 +
14
10

2
5 −

4
10 0 6

5 −
2
10

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
Thus we happen to have AB = BA in this particular case.

4. (a)

⎡⎢⎢⎢⎣
0 2

36 20

16 3

⎤⎥⎥⎥⎦
(3×2)

(b)

⎡⎣ 49 3

4 3

⎤⎦
(2×2)

(c)

⎡⎣ 3x+ 5y

4x+ 2y − 7z

⎤⎦
(2×1)

(d)
h
7a+ c 2b+ 4c

i
(1×2)

5. Yes. Yes. Yes. Yes.

6.

(a) x2 + x3 + x4 + x5

(b) a5 + a6x6 + a7x7 + a8x8

(c) b(x1 + x2 + x3 + x4)

(d) a1x0 + a2x1 + · · ·+ anxn−1 = a1 + a2x+ a3x2 + · · ·+ anxn−1

14
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(e) x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2

7. (a)
3P
i=1
ixi(xi − 1) (b)

4P
i=2
ai(xi+1 + i) (c)

nP
i=1

1
xi (d)

nP
i=0

1
xi

8.

(a)
µ

nP
i=1
xi

¶
+ xn+1 = x0 + x1 + · · ·+ xn + xn+1 =

n+1P
i=1

xi

(b)

nX
j=1

abjyj = ab1y1 + ab2y2 + · · ·+ abnyn

= a(b1y1 + b2y2 + · · ·+ bnyn) = a
nX
j=1

bjyj

(c)

nX
j=1

(xj + yj) = (x1 + y1) + (x2 + y2) + · · ·+ (xn + yn)

= (x1 + x2 + · · ·+ xn) + (y1 + y2 + · · ·+ yn)

=
nX
j=1

xj +
nX
j=1

yj

Exercise 4.3

1.

(a) uv0 =

⎡⎢⎢⎢⎣
5

1

3

⎤⎥⎥⎥⎦ h 3 1 −1
i
=

⎡⎢⎢⎢⎣
15 5 −5
3 1 −1
9 3 −3

⎤⎥⎥⎥⎦

(b) uw0 =

⎡⎢⎢⎢⎣
5

1

3

⎤⎥⎥⎥⎦ h 5 7 8− 1
i
=

⎡⎢⎢⎢⎣
35 25 40

7 5 8

21 15 24

⎤⎥⎥⎥⎦

(c) xx0 =

⎡⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎦ h x1 x2 x3

i
=

⎡⎢⎢⎢⎣
x21 x1x2 x1x3

x2x1 x22 x2x3

x3x1 x3x2 x23

⎤⎥⎥⎥⎦

(d) v0u =
h
3 1 −1

i⎡⎢⎢⎢⎣
5

1

3

⎤⎥⎥⎥⎦ = [15 + 1− 3] = [44] = 44
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(e) u0v =
h
5 1 3

i⎡⎢⎢⎢⎣
3

1

−1

⎤⎥⎥⎥⎦ = [15 + 1− 3] = 13

(f) w0x =
h
7 5 8

i⎡⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎦ = [7x1 + 5x2 + 8x3] = 7x1 + 5x2 + 8x3

(g) u0u =
h
5 1 3

i⎡⎢⎢⎢⎣
5

1

3

⎤⎥⎥⎥⎦ = [25 + 1 + 9] = [35] = 35

(h) x0x =
h
x1 x2 x3

i⎡⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎦ = £x21 + x22 + x23¤ = 3P
i=1
x2i

2.

(a) All are defined except w0x and x0y0.

(b) xy0 =

⎡⎣ x1

x2

⎤⎦ h y1 y2

i
=

⎡⎣ x1y1 x1y2

x2y1 x2y2

⎤⎦
xy0 =

h
y1 y2

i⎡⎣ y1

y2

⎤⎦ = y21 + y22
zz0 =

⎡⎣ z1

z2

⎤⎦ h z1 z2

i
=

⎡⎣ z21 z1z2

z2z1 z22

⎤⎦
yw0 =

⎡⎣ y1

y2

⎤⎦ h 3 2 16
i
=

⎡⎣ 3y1 2y1 16y1

3y2 2y2 16y2

⎤⎦
x · y = x1y1 + x2y2

3.

(a)
nP
i=1
PiQi

(b) Let P and Q be the column vectors or prices and quantities, respectively. Then the total

revenue is P ·Q or P 0Q or Q0P .
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4.

(a) w01w2 = 11 (acute angle, Fig. 4.2c)

(b) w01w2 = −11 (obtuse angle, Fig. 4.2d)

(c) w01w2 = −13 (obtuse angle, Fig. 4.2b)

(d) w01w2 = 0 (right angle, Fig. 4.3)

(e) w01w2 = 5 (acute angle, Fig. 4.3)

5. (a) 2v =

⎡⎣ 0

6

⎤⎦ (b) u+ v =

⎡⎣ 5

4

⎤⎦ (c) u− v =

⎡⎣ 5

−2

⎤⎦
(d) v−u =

⎡⎣ −5
2

⎤⎦ (e) 2u+ 3v =

⎡⎣ 10

11

⎤⎦ (f) 4u− 2v =

⎡⎣ 20

−2

⎤⎦
6. (a) 4e1 + 7e2 (b) 25e1 − 2e2 + e3

(c) −e1 + 6e2 + 9e3 (d) 2e1 + 8e3

7.

(a) d =
p
(3− 0)2 + (2 + 1)2 + (8− 5)2 =

√
27

(b) d =
p
(9− 2)2 + 0 + (4 + 4)2 =

√
113

8. When u, v, and w all lie on a single straight line.

9. Let the vector v have the elements (a1, . . . , an). The point of origin has the elements (0, . . . , 0).

Hence:

(a) d(0, v) = d(v, 0) =
p
(a1 − 0)2 + . . .+ (an − 0)2

=
p
a21 + . . .+ a

2
n

(b) d(v, 0) = (v0v)1/2 [See Example 3 in this section]

(c) d(v, 0) = (v · v)1/2

Exercise 4.4

1.

(a) (A+B) + C = A+ (B + C) =

⎡⎣ 5 17

11 17

⎤⎦
17

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



(b) (A+B) + C = A+ (B + C) =

⎡⎣ −1 9

9 −1

⎤⎦
2. No. It should be A−B = −B +A

3. (AB)C = A(BC) =

⎡⎣ 250 68

75 55

⎤⎦
(a) k(A+B) = k[aij + bij ] = [kaij + kbij ] = [kaij ] + [kbij ]

= k[aij ] + k [bij ] = kA+ kB

(b) (g + k)A = (g + k)[aij ] = [(g + k)aij ] = [gaij + kaij ]

= [gaij ] + [kaij ] = g [aij ] + k [aij ] = gA+ kA

4.

(a)

AB =

⎡⎣ (12× 3) + (14× 0) (12× 9) + (14× 2)
(20× 3) + (5× 0) (20× 9) + (5× 2)

⎤⎦
=

⎡⎣ 36 136

60 190

⎤⎦
(b)

AB =

⎡⎣ (4× 3) + (7× 2) (4× 8) + (7× 6) (4× 5) + (7× 7)
(9× 3) + (1× 2) (9× 8) + (1× 6) (9× 5) + (1× 7)

⎤⎦
=

⎡⎣ 26 74 69

29 78 52

⎤⎦
(c)

AB =

⎡⎢⎢⎢⎣
(7× 12) + (11× 3) (7× 4) + (11× 6) (7× 5) + (11× 1)
(2× 12) + (9× 3) (2× 4) + (9× 6) (2× 5) + (9× 1)
(10× 12) + (6× 3) (10× 4) + (6× 6) (10× 5) + (6× 1)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
117 94 46

51 62 19

138 76 56

⎤⎥⎥⎥⎦ = C
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(d)

AB =

⎡⎣ (6× 10) + (2× 11) + (5× 2) (6× 1) + (2× 3) + (5× 9)
(7× 10) + (9× 11) + (4× 2) (7× 1) + (9× 3) + (4× 9)

⎤⎦
=

⎡⎣ 92 57

177 70

⎤⎦
(e)

i. AB =

⎡⎢⎢⎢⎣
−2× 3 −2× 6 −2×−2
4× 3 4× 6 4×−2
7× 3 7× 6 7×−2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−6 −12 4

12 24 −8
21 42 −14

⎤⎥⎥⎥⎦
ii. BA = [(3×−2) + (6× 4) + (−2× 7)] = [4]

5. (A+B)(C +D) = (A+B)C + (A+B)D = AC +BC +AD +BD

6. No, x0Ax would then contain cross-product terms a12x1x2 and a21x1x2.

7. Unweighted sum of squares is used in the well-known method of least squares for fitting an

equation to a set of data. Weighted sum of squares can be used, e.g., in comparing weather

conditions of different resort areas by measuring the deviations from an ideal temperature and

an ideal humidity.

Exercise 4.5

1.

(a) AI3 =

⎡⎣ −1 5 7

0 −2 4

⎤⎦
(b) I2A =

⎡⎣ −1 5 7

0 −2 4

⎤⎦
(c) I2x =

⎡⎣ x1

x2

⎤⎦
(d) x0I2 =

h
x1 x2

i
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2.

(a) Ab =

⎡⎣ −9 + 30 + 0
0− 12 + 0

⎤⎦ =
⎡⎣ 21

−12

⎤⎦
(b) AIb gives the same result as in (a).

(c) x0IA =
h
−x1 5x1 − 2x2 7x1 + 4x2

i
(d) x0A gives the same result as in (c)

3. (a) 5× 3 (b) 2× 6 (c) 2× 1 (d) 2× 5

4. The given diagonal matrix, when multiplied by itself, gives another diagonal matrix with the

diagonal elements a211, a
2
22, . . . , a

2
nn. For idempotency, we must have a

2
ii = aii for every i. Hence

each aii must be either 1, or 0. Since each aii can thus have two possible values, and since

there are altogether n of these aii, we are able to construct a total of 2n idempotent matrices

of the diagonal type. Two examples would be In and 0n.

Exercise 4.6

1. A0 =

⎡⎣ 0 −1
4 3

⎤⎦ B0 =

⎡⎣ 3 0

−8 1

⎤⎦ C 0 =

⎡⎢⎢⎢⎣
1 6

0 1

9 1

⎤⎥⎥⎥⎦

2. (a) (A+B)0 = A0 +B0 =

⎡⎣ 3 −1
−4 3

⎤⎦ (b) (AC)0 = C 0A0 =

⎡⎢⎢⎢⎣
24 17

4 3

4 −6

⎤⎥⎥⎥⎦
3. Let D ≡ AB. Then (ABC)0 ≡ (DC)0 = C 0D0 = C0(AB)0 = C0(B0A0) = C 0B0A0

4. DF =

⎡⎣ 1 0

0 1

⎤⎦, thus D and F are inverse of each other, Similarly,
EG =

⎡⎣ 1 0

0 1

⎤⎦, so E and G are inverses of each other.
5. Let D ≡ AB. Then (ABC)−1 ≡ (DC)−1 = C−1D−1 = C−1(AB)−1 = C−1(B−1A−1) =

C−1B−1A−1
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6.

(a) A andX 0X must be square, say n×n; X only needs to be n×m, where m is not necessarily
equal to n.

(b) AA = [I −X(X 0X)−1X 0][I −X(X 0X)−1X 0]

= II − IX(X 0X)−1X 0 −X(X 0X)−1X 0I +X(X 0X)−1X 0X(X 0X)−1X 0

[see Exercise 4.4-6]

= I −X(X 0X)−1X 0 −X(X 0X)−1X 0 +XI(X 0X)−1X 0 [by (4.8)]

= I −X(X 0X)−1X 0

= A

Thus A satisfies the condition for idempotency.

Exercise 4.7

1. It is suggested that this particular problem could also be solved using a spreadsheet or other

mathematical software. The student will be able to observe features of a Markov process more

quickly without doing the repetitive calculations.

(a) The Markov transition matrix is

⎡⎣ 0.9 0.1

0.7 0.3

⎤⎦
(b) Two periods Three Periods Five Periods Ten Periods

Employed 1008 1042 1050 1050

Unemployed 192 158 150 150

(c) As the original Markov transition matrix is raised to successively greater powers the

resulting matrix converges to

Mn

n→∞
=⇒

⎡⎣ 0.875 0.125

0.875 0.125

⎤⎦
which is the ”steady state”, giving us 1050 employed and 150 unemployed.
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CHAPTER 5

Exercise 5.1

1. (a) (5.2) (b) (5.2) (c) (5.3) (d) (5.3) (e) (5.3)

(f) (5.1) (g) (5.2)

2. (a) p =⇒ q (b) p =⇒ q (c) p⇐⇒ q

3. (a) Yes (b) Yes (c) Yes (d) No; v02 = −2v01

4. We get the same results as in the preceding problem.

(a) Interchange row 2 and row 3 in A to get a matrix A1. In A1 keep row 1 as is, but add

row 1 to row 2, to get A2. In A2, divide row 2 by 5. Then multiply the new row 2 by −3,
and add the result to row 3. The resulting echelon matrix

A3 =

⎡⎢⎢⎢⎣
1 5 1

0 1 1
5

0 0 825

⎤⎥⎥⎥⎦
contains three nonzero-rows; hence r(A) = 3.

(b) Interchange row 1 and row 3 in B to get a matrix B1. In B1, divide row 1 by 6. Then

multiply the new row 1 by −3, and add the result to row 2, to get B2. In B2, multiply
row 2 by 2, then add the new row 2 to row 3. The resulting echelon matrix

B3 =

⎡⎢⎢⎢⎣
1 1

6 0

0 1 4

0 0 0

⎤⎥⎥⎥⎦
with two nonzero-rows in B3; hence r(B) = 2. There is linear dependence in B: row 1 is

equal to row 3− 2(row 2). Matrix is singular.

(c) Interchange row 2 and row 3 in C, to get matrix C1. In C1 divide row 1 to 7. Then

multiply the new row 1 by −8, and add the result to row 2, to get C2. In C2, multiply
row 2 by −7/48. Then multiply the new row 2 by −1 and add the result to row 3, to get

22

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



C3. In C3, multiply row 3 by 2/3, to get the echelon matrix

C4 =

⎡⎢⎢⎢⎣
1 6

7
3
7

3
7

0 1 1
2 −23

0 0 1 10
9

⎤⎥⎥⎥⎦
There are three nonzero-rows in C4; hence r(C) = 3. The question of nonsingularity is

not relevant here because C is not square.

(d) interchange row 1 and row 2 in D, to get matrix D1 (This step is optional, because we can

just as well start by dividing the original row 1 by 2 to produce the desired unit element

at the left end of the row. But the interchange of rows 1 and 2 gives us simpler numbers

to work with). In D1, multiply row 1 by −2, and add the result to row 2, to get D2.

Since the last two rows of D2, are identical, linear dependence is obvious. To produce an

echelon matrix, divide row 2 in D2 by 5, and then add (−5) times the new row 2 to row
3. The resulting echelon matrix

D3 =

⎡⎢⎢⎢⎣
1 1 0 1

0 1 9
5 −35

0 0 0 0

⎤⎥⎥⎥⎦
contains two nonzero-rows; hence r(D) = 2. Again, the question nonsingularity is not

relevant here.

5. The link is provided by the third elementary row operation. If, for instance, row 1 of a given

matrix is equal to row 2 minus k times row 3 (showing a specific pattern of linear combination),

then by adding (−1) times row 2 and k times row 3 to row 1, we can produce a zero-row. This
process involves the third elementary row operation. the usefulness of the echelon matrix

transformation lies in its systematic approach to force out zero-rows if they exist.

Exercise 5.2

1. (a) −6 (b) 0 (c) 0 (d) 157

(e) 3abc− a3 − b3 − c3 (f) 8xy + 2x− 30

2. +, −, +, −, −.
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3. |Ma| =

¯̄̄̄
¯̄ a f

h i

¯̄̄̄
¯̄ |Mb| =

¯̄̄̄
¯̄ d f

g i

¯̄̄̄
¯̄ |Mf | =

¯̄̄̄
¯̄ a b

g h

¯̄̄̄
¯̄

|Ca| = |Ma| |Cb| = − |Mb| |Cf | = − |Mf |

4. (a) 72 (b) −81

5. The cofactor of element 9 is −

¯̄̄̄
¯̄̄̄
¯
2 3 4

1 6 0

0 −5 0

¯̄̄̄
¯̄̄̄
¯ = 20

6. First find the minors

|M |31 =

¯̄̄̄
¯̄ 11 4

2 7

¯̄̄̄
¯̄ = 69

|M |32 =

¯̄̄̄
¯̄ 9 4

3 7

¯̄̄̄
¯̄ = 51

|M |33 =

¯̄̄̄
¯̄ 9 11

3 2

¯̄̄̄
¯̄ = −15

Step 4: Since a cofactor is simply the minor with a particular sign, according to |Cij | =
(−1)i+j |Mij | we find:

|C31| = (−1)4 |M31| = 69

|C32| = (−1)5 |M32| = −51

|C33| = (−1)6 |M33| = −15

7. Expand second column

|A| = a12 |C12|+ a22 |C22|+ a32 |C32|

|A| = (7)(−1)

¯̄̄̄
¯̄ 2 6

9 12

¯̄̄̄
¯̄+ (5)

¯̄̄̄
¯̄ 15 9

9 12

¯̄̄̄
¯̄+ 0

|A| = (7)(−30) + (5)(99) = 705

Exercise 5.3

1. N/A
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2. Factoring out the k in each successive column (or row)—for a total of n columns (or rows)—will

yield the indicated result.

3. (a) Property IV. (b) Property III (applied to both rows).

4. (a) Singular. (b) Singular. (c) Singular. (d) Nonsingular.

5. In (d), the rank is 3. In (a), (b) and (c), the rank is less than 3.

6. The set in (a) can because when the three vectors are combined into a matrix, its determinant

does not vanish. But the set in (b) cannot.

7. A is nonsingular because |A| = 1− b 6= 0.

(a) To have a determinant, A has to be square.

(b) Multiplying every element of an n × n determinant will increase the value of the deter-
minant 2n−fold. (See Problem 2 above)

(c) Matrix A, unlike |A|, cannot ”vanish.” Also, an equation system, unlike a matrix, cannot
be nonsingular or singular.

Exercise 5.4

1. They are
4P
i=1
ai3 |Ci2| and

4P
j=1

a2j |C4j |, respectively.

2. Since adjA =

⎡⎣ 1 −2
0 5

⎤⎦, We have A−1 = AdjA

|A| = 1
5

⎡⎣ 1 −2
0 5

⎤⎦
Similarly, we have B−1 = −12

⎡⎣ 2 0

−9 −1

⎤⎦ , C−1 = − 1
24

⎡⎣ −1 −7
−3 3

⎤⎦
3.

(a) Interchange the two diagonal elements of A, multiply the two off-diagonal elements of A

by −1.

(b) Divide the adjA by |A| .
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4. E−1 = 1
20

⎡⎢⎢⎢⎣
3 2 −3
−7 2 7

−6 −4 26

⎤⎥⎥⎥⎦ , F−1 = −110

⎡⎢⎢⎢⎣
0 2 −3
10 −6 −1
0 −4 1

⎤⎥⎥⎥⎦ ,

G−1 =

⎡⎢⎢⎢⎣
1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎦ , H−1 =

⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦ ,

5. A−1 = 1
|A| ·AdjA =

1
98

⎡⎢⎢⎢⎣
13 1 16

11 31 6

−7 7 14

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

13
98

1
98

16
98

11
98

31
98

6
98

− 1
14

1
14

1
7

⎤⎥⎥⎥⎦
6.

(a)

x = A−1d⎡⎣ x

y

⎤⎦ =

⎡⎣ 5
14

−3
14

−17
2
7

⎤⎦⎡⎣ 28

42

⎤⎦
=

⎡⎣ ¡
5
14

¢
(28) +

¡−3
14

¢
(42)¡

−17
¢
(28) +

¡
2
7

¢
(42)

⎤⎦ =
⎡⎣ 1

8

⎤⎦
(b)

x = A−1d⎡⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
13
98

1
98

16
98

11
98

31
98

6
98

− 1
14

1
14

1
7

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
8

12

5

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

104
98 +

12
98+

80
98

88
98+

372
98 +

30
98

− 8
14+

12
14+

5
7

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
2

5

1

⎤⎥⎥⎥⎦
7. Yes, Matrices G and H in problem 4 are examples.

Exercise 5.5

1.

(a) |A| = 7, |A1| = 28, |A2| = 21, Thus x∗1 = 4, x∗2 = 3.

(b) |A| = −11, |A1| = −33, |A2| = 0, Thus x∗1 = 3, x∗2 = 0.

(c) |A| = 15, |A1| = 30, |A2| = 15, Thus x∗1 = 2, x∗2 = 1.
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(d) |A| = |A1| = |A2| = −78, Thus x∗1 = x∗2 = 1.

2.

(a) A−1 = 1
7

⎡⎣ 1 2

−2 3

⎤⎦ and x∗ = A−1d =
⎡⎣ 4

3

⎤⎦
(b) A−1 = −111

⎡⎣ −1 −3
−4 −1

⎤⎦ and x∗ = A−1d =
⎡⎣ 3

0

⎤⎦
(c) A−1 = 1

15

⎡⎣ 1 7

−1 8

⎤⎦ and x∗ = A−1d =
⎡⎣ 2

1

⎤⎦
(d) A−1 = −178

⎡⎣ −3 −9
−7 5

⎤⎦ and x∗ = A−1d =
⎡⎣ 1

1

⎤⎦
3.

(a) |A| = 38, |A1| = 76, |A2| = 0, |A3| = 38; thus x∗1 = 2, x∗2 = 0, x∗3 = 1.

(b) |A| = 18, |A1| = −18, |A2| = 54, |A3| = 126; thus x∗1 = −1, x∗2 = 3, x∗3 = 7.

(c) |A| = 17, |A1| = 0, |A2| = 51, |A3| = 68; thus x∗ = 0, y∗ = 3, z∗ = 4.

(d) |A| = 4, |A1| = 2(b+c), |A2| = 2(a+c), |A3| = 2(a+b); thus x∗ = 1
2 (b+c), y

∗ = 1
2 (a+c),

z∗ = 1
2 (a+ b).

4. After the indicated multiplication by the appropriate cofactors, the new equations will add up

to the following equation:

nX
i=1

ai1 |Cij |x1 +
nX
i=1

ai2 |Cij |x2 + · · ·+
nX
i=1

ain |Cij |xn =
nX
i=1

di |Cij |

When j = 1, the coefficient of x1 becomes |A|, whereas the coefficients of the other variables
all vanish; thus the last equation reduces to |A|x1 =

nP
i=1
di |Ci1|, leading to the result for x∗1 in

(5.17). When j = 2, we similarly get the result for x∗2.

Exercise 5.6

1. The system can be written as

⎡⎢⎢⎢⎣
1 −1 0

−b 1 b

−t 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Y

C

T

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
I0 +G0

a

d

⎤⎥⎥⎥⎦
27

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



(a) Since A−1 = 1
1−b+bt

⎡⎢⎢⎢⎣
1 −1 −b

b(1− t) 1 −b
t t 1− b

⎤⎥⎥⎥⎦, the solution is
⎡⎢⎢⎢⎣
Y ∗

C∗

T ∗

⎤⎥⎥⎥⎦ = A−1d = 1

1− b+ bt

⎡⎢⎢⎢⎣
I0 +G0 + a− bd
b(1− t)(I0 +G0) + a− bd
t(I0 +G0) + at+ d(1− b)

⎤⎥⎥⎥⎦
(b) |A| = 1− b+ bt

|A1| = I0 +G0 − bd+ a
|A2| = a− bd+ b(1− t)(I0 +G0)
|A3| = d(1− b) + t(a+ I0 +G0)
Thus

Y ∗ =
I0 +G0 + a− bd

1− b+ bt

C∗ =
a− bd+ b(1− t)(I0 +G0)

1− b+ bt

T ∗ =
d(1− b) + t(I0 +G0 + a)

1− b+ bt

2. The system can be written as

⎡⎢⎢⎢⎣
1 −1 −1
−b 1 0

−g 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Y

C

G

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

I0

a− bT0
0

⎤⎥⎥⎥⎦

(a) Since A−1 = 1
1−b−g

⎡⎢⎢⎢⎣
1 1 1

b 1− g b

g g 1− b

⎤⎥⎥⎥⎦, the solution is
⎡⎢⎢⎢⎣
Y ∗

C∗

G∗

⎤⎥⎥⎥⎦ = A−1d = 1

1− b− g

⎡⎢⎢⎢⎣
I0 + a− bT0
bI0 + (1− g)(a− bT0)
g(I0 + a− bT0)

⎤⎥⎥⎥⎦
(b) |A| = 1− b− g

|A1| = I0 + a− bT0
|A2| = bI0 + (1− g)(a− bT0)
|A3| = g(I0 + a− bT0)
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Thus

Y ∗ =
I0 + a− bT0
1− b− g

C∗ =
bI0 + (1− g)(a− bT0)

1− b− g

G∗ =
g(I0 + a− bT0)
1− b− g

3.

(a) ⎡⎣ .3 100

.25 −200

⎤⎦⎛⎝ Y

R

⎞⎠ =

⎛⎝ 252

176

⎞⎠
(b) The inverse of A is

A−1 =
1

|A| ·AdjA =
1

−85

⎡⎣ −200 −.25
−100 .3

⎤⎦
=

⎡⎣ 40
17

20
17

.05
17

−.06
17

⎤⎦
Finally, ⎛⎝ Y

R

⎞⎠ =

⎡⎣ 40
17

20
17

.05
17

−.06
17

⎤⎦⎡⎣ 252

176

⎤⎦ =
⎡⎣ 800

.12

⎤⎦
Exercise 5.7

1.

⎡⎢⎢⎢⎣
x∗1

x∗2

x∗3

⎤⎥⎥⎥⎦ = 1
0.384

⎡⎢⎢⎢⎣
0.66 0.30 0.24

0.34 0.62 0.24

0.21 0.27 0.60

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
30

15

10

⎤⎥⎥⎥⎦ = 1
0.384

⎡⎢⎢⎢⎣
26.70

21.90

16.35

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
69.53

57.03

42.58

⎤⎥⎥⎥⎦
2.

3P
j=1

a0jx
∗
j = 0.3(69.53) + 0.3(57.03) + 0.4(42.58) = $55.00 billion.

3.

(a) A =

⎡⎣ 0.10 0.50

0.60 0

⎤⎦, I −A =
⎡⎣ 0.90 −0.50
−0.60 1.00

⎤⎦. Thus the matrix equation is
⎡⎣ 0.90 −0.50
−0.60 1.00

⎤⎦⎡⎣ x1

x2

⎤⎦ =
⎡⎣ 1000

2000

⎤⎦
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(b) The leading principle minors of the Leontief matrix are |B1| = 0.90 > 0, |B1| = |I −A| =
0.60 > 0, thus the Hawkins-Simon condition is satisfied.

(c) x∗1 =
2000
0.60 = 3333

1
3 x∗2 =

2400
0.60 = 4000

4.

(a) Element 0.33: 33c of commodity II is needed as input for producing $1 of commodity I.

Element 0: Industry III does not use its own output as its input.

Element 200: The open sector demands 200 (billion dollars) of commodity II.

(b) Third-column sum = 0.46, meaning that 46c of non-primary inputs are used in producing

$1 of commodity III.

(c) No significant economic meaning.

(d)

⎡⎢⎢⎢⎣
0.95 −0.25 −0.34
−0.33 0.90 −0.12
−0.19 −0.38 1.00

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1800

200

900

⎤⎥⎥⎥⎦
(e) |B1| = 0.95 > 0 |B2| =

¯̄̄̄
¯̄ 0.95 −0.25
−0.33 0.90

¯̄̄̄
¯̄ = 0.7725 > 0 |B3| = |I −A| =

0.6227 > 0

The Hawkins-Simon condition is satisfied.

5.

(a) 1st-order: |B11|, |B22|, |B33|, |B44|

2nd-order:

¯̄̄̄
¯̄ b11 b12

b21 b22

¯̄̄̄
¯̄,

¯̄̄̄
¯̄ b11 b13

b31 b33

¯̄̄̄
¯̄,

¯̄̄̄
¯̄ b11 b14

b41 b44

¯̄̄̄
¯̄¯̄̄̄

¯̄ b22 b23

b32 b33

¯̄̄̄
¯̄,

¯̄̄̄
¯̄ b22 b24

b42 b44

¯̄̄̄
¯̄,

¯̄̄̄
¯̄ b33 b34

b43 b44

¯̄̄̄
¯̄

3rd-order:

¯̄̄̄
¯̄̄̄
¯
b11 b12 b13

b21 b22 b23

b31 b32 b33

¯̄̄̄
¯̄̄̄
¯ ,
¯̄̄̄
¯̄̄̄
¯
b11 b12 b14

b21 b22 b24

b41 b42 b44

¯̄̄̄
¯̄̄̄
¯ ,
¯̄̄̄
¯̄̄̄
¯
b11 b12 b14

b31 b33 b34

b41 b43 b44

¯̄̄̄
¯̄̄̄
¯ ,
¯̄̄̄
¯̄̄̄
¯
b22 b23 b24

b32 b33 b34

b42 b43 b44

¯̄̄̄
¯̄̄̄
¯

4th-order: same as |B| .

(b) The first three leading principal minors are the same as those in (5.28). the fourth one is

simply |B|.
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6. The last part of the Hawkins-Simon condition, |Bn| > 0, is equivalent to |B| > 0. Since

|B| is a nonsingular matrix, and Bx = d has a unique solution x∗ = B−1d, not necessarily

nonnegative.
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CHAPTER 6

Exercise 6.2

1.

(a)
∆y

∆x
=
4(x+∆x)2 + 9− (4x2 + 9)

∆x
= 8x+ 4∆x

(b) dy/dx = f 0(x) = 8x

(c) f 0(3) = 24 and f 0(4) = 32.

2.

(a)
∆y

∆x
= 10x+ 5∆x− 4

(b) dy/dx = 10x− 4

(c) f 0(2) = 16 f 0(3) = 26

3.

(a)
∆y

∆x
= 5; a constant function.

(b) No; dy/dx = 5.

Exercise 6.4

1. Left-side limit = right-side limit = 15. Yes, the limit is 15.

2. The function can be rewritten as q = (v3 + 6v2 + 12)/v = v2 + 6v + 12 (v 6= 0). Thus
(a) lim

v→0
q = 12 (b) lim

v→2
q = 28 (c) lim

v→a
q = a2 + 6a+ 12

3. (a) 5 (b) 5

4. If we choose a very small neighborhood of the point L+ a2, we cannot find a neighborhood of

N such that for every value of v in the N-neighborhood, q will be in the (L+a2)-neighborhood.
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Exercise 6.5

1.

(a) Adding −3x − 2 to both sides, we get −3 < 4x. Multiplying both sides of the latter by
1/4, we get the solution −3/4 < x.

(b) The solution is x < −9.

(c) The solution is x < 1/2

(d) The solution is −3/2 < x.

2. The continued inequality is 8x − 3 < 0 < 8x. Adding −8x to all sides, and then multiplying
by −1/8 (thereby reversing the sense of inequality), we get the solution 0 < x < 3/8.

(a) By (6.9), we can write −6 < x+ 1 < 6. Subtracting 1 from all sides, we get −7 < x < 5
as the solution.

(b) The solution is 2/3 < x < 2.

(c) The solution is −4 ≤ x ≤ 1.

Exercise 6.6

1.

(a) lim
v→0

q = 7− 0 + 0 = 7

(b) lim
v→3

q = 7− 27 + 9 = −11

(c) lim
v→3

q = 7 + 9 + 1 = 17

2.

(a) lim
v→−1

q = lim
v→−1

(v + 2) · lim
v→−1

(v − 4) = 1(−4) = −4

(b) lim
v→0

q = 2(−3) = −6

(c) lim
v→5

q = 7(2) = 14

3.

(a) lim
v→0

= lim
v→0

(3v + 5)/ lim
v→0

(v + 2) = 5/2 = 212
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(b) lim
v→5

q = (15 + 5)/(5 + 2) = 20/7 = 267

(c) lim
v→−1

q = (−3 + 5)/(−1 + 2) = 2/1 = 2

Exercise 6.7

1. For example,

2. (a) lim
v→N

q = N2 − 5N − 2 = g(N) (b) Yes. (c) Yes.

3. (a) lim
v→N

q = (N + 2)/(N2 + 2) = g(N)

(b) Yes. (c) The function is continuous in the domain

4. (a) No. (b) No, because f(x) is not defined at x = 4;

i.e., x = 4 is not in the domain of the function.

(c) for x 6= 4, the function reduces to y = x− 5, so lim
x→4

y = −1.

5. No, because q = v + 1, as such, is defined at every value of v, whereas the given rational

function is not defined at v = 2 and v = −2. The only permissible way to rewrite is to qualify
the equation q = v + 1 by the restrictions v 6= 2 and v 6= −2.

6. Yes; each function is not only continuous but also smooth.
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CHAPTER 7

Exercise 7.1

1. (a) dy/dx = 12x11 (b) dy/dx = 0 (c) dy/dx = 35x4

(d) dw/du = −3u−2 (e) dw/du = −2u−1/2 (f) dw/du = u−3/4

2.
(a) 4x−5 (b) 3x−2/3 (c) 20w3

(d) 2cx (e) abub−1 (f) abu−b−1

3.

(a) f 0(x) = 18; thus f 0(1) = 18 and f 0(2) = 18.

(b) f 0(x) = 3cx2; thus f 0(1) = 3c and f 0(2) = 12c.

(c) f 0(x) = 10x−3; thus f 0(1) = 10 and f 0(2) = 10
8 = 4

1
4

(d) f 0(x) = x1/3 = 3
√
x; thus f 0(1) = 1 and f 0(2) = 3

√
2

(e) f 0(w) = 2w−2/3; thus f 0(1) = 2 and f 0(2) = 2 · 2−2/3 = 21/3

(f) f 0(w) = 1
2w
−7/6; thus f 0(1) = 1

2 and f
0(2) = 1

2 (2
−7/6) = 2−1 · 2−7/6

4. Refer to the following two graphs

Exercise 7.2

1. V C = Q3 − 5Q2 + 12Q. The derivative d
dQV C = 3Q

2 − 10Q+ 12 is the MC function.

2. C = AC ·Q = Q3 − 4Q2 + 174Q. Thus MC = dC/dQ = 3Q2 − 9Q+ 174.
Since the total-cost function shows zero fixed cost, the situation depicted is the long run.

35

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



3. (a) 3(27x2 + 6x− 2) (b) 54x2 + 78x− 70
(c) 12x(x+ 1) (d) cx(ax− 2b)

(e) −x(9x+ 14) (f) 2− x
2 + 3

x2
=
x2 − 3
x2

4. (b) R = AR ·Q = 60Q− 3Q2, and MR = dr/dQ = 60− 6Q.
(c) It should.

(d) The MR curve is twice as steep as the AR curve.

5. Let the average curve be represented by A = a+ bx. Then the total curve will be T = A · x =
ax+ bx2, and the marginal curve will be M = dT/dx = a+ bx.

6. Let φ(x) ≡ g(x)h(x); this implies that φ0(x) = g0(x)h(x) + g(x)h0(x). Then we may write

d

dx
[f(x)g(x)h(x)] =

d

dx
[f(x)φ(x)] = f 0(x)φ(x) + f(x)φ0(x)

= f 0(x)g(x)h(x) + f(x) [g0(x)h(x) + g(x)h0(x)]

= f 0(x)g(x)h(x) + f(x)g0(x)h(x) + f(x)g(x)h0(x)

7. (a)
x2 − 3
x2

(b) − 9
x2

(c)
30

(x+ 5)2
(d)

acx2 + 2adx− bc
(cx+ d)2

8. (a)
d

dx
(ax+ b) = a (b)

d

dx
x(ax+ b) = 2ax+ b

(c)
d

dx

1

ax+ b
=

−a
(ax+ b)2

(d)
d

dx

ax+ b

x
=
−b
x2

9.

(a) Yes; the continuity of f(x) is a necessary condition for f(x) to be differentiable.

(b) No; a continuous function may not have a continuous derivative function (e.g., Fig. 7.1c).

10.

(a) MC = dTC
dQ = 6Q+ 7

AC = TC
Q = 3Q+ 7 + 12

Q

(b) MR = dTR
dQ = 10− 2Q

AR = TR
Q = 10−Q

(c) MP = dTP
dL = a+ 2bL− cL2

AP = TP
L = a+ bL− cL2
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Exercise 7.3

1. dy/dx = (dy/du)(du/dx) = (3u2 + 2((−2x) = −2x[3(5− x2)2 + 2]

2. dw/dx = (dw/dy)(dy/dx) = 2ay(2bx+ c) = 2ax(2b2x2 + 3bcx+ c2)

3.

(a) Let w = 3x2 − 13; this implies that dw/dx = 6x. Since y = w3, we have dy
dx =

dy
dw

dw
dx =

3w2(6x) = 18x(3x2 − 13)2

(b) dy
dx = 189x

2(7x3 − 5)8

(c) dy
dx = 5a(ax+ b)

4

4. Both methods yield the same answer dy/dx = −32(16x+ 3)−3

5. The inverse function is x = y
7 − 3. The derivatives are dy/dx = 7 and dx/dy = 1/7; thus the

inverse function rule is verified.

6.

(a) Since x > 0, we have dy/dx = −6x5 < 0 for all admissible values of x. Thus the function
is strictly decreasing, and dx/dy is equal to −1/6x5, the reciprocal of dy/dx.

(b) dy/dx = 20x4 + 3x2 + 3 > 0 for any value of x; thus the function is strictly increasing,

and dx/dy = 1/(20x4 + 3x2 + 3).

Exercise 7.4

1. (a) ∂y/∂x1 = 6x
2
1 − 22x1x2 ∂y/∂x2 = −11x21 + 6x2

(b) ∂y/∂x1 = 7 + 6x
2
2 ∂y/∂x2 = 12x1x2 − 27x22

(c) ∂y/∂x1 = (2(x2 − 2) ∂y/∂x2 = 2x1 + 3

(d) ∂y/∂x1 = 5/(x2 − 2) ∂y/∂x2 = −(5x1 + 3)/(x2 − 2)2

2. (a) fx = 3x
2 + 5y fy = 5x− 3y2

(b) fx = 3x
2 − 4x− 3y fy = −3(x− 2)

(c) fx = 5y/(x+ y)
2 fy = −5x/(x+ y)2

(d) fx = (x
2 + 1)/x2y fy = −(x2 − 1)/xy2
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3. (a)12 (b) -7 (c) 10/9 (d) 1

4. MPPK = (0.3)96K
−0.7L0.7 MPPL(0.7)96K

0.3L−0.3

5. (a) U1 = 2(x1 + 2)(x2 + 3)3 U2 = 3(x1 + 2)
2(x2 + 3)

2

(b) U1(3, 3) = 2160

6.

(a) Since M = D + C, where C = cD, it follows that M = D + cD = (1 + c)D.

Since H = C +R = cD+ rD = (c+ r)D, we can write D =
H

c+ r
. Thus, by substituting

out D, we have M =
(1 + c)H

c+ r

(b)
∂M

∂r
=
−(1 + c)H
(c+ r)2

< 0. An increase in in r lowers M

(c)
∂M

∂c
=
H(c+ r)− (1 + c)H

(c+ r)2
=
H(r − 1)
(c+ r)2

< 0. An increase in c also lowers M

7. (a) grad f(x, y, z) = (2x, 3y2, 4z3)

(b) grad f(x, y, z) = (yz, xz, xy)

Exercise 7.5

1.
∂Q∗

∂a
=

d

b+ d
> 0

∂Q∗

∂b
=
−d(a+ c)
(b+ d)2

< 0

∂Q∗

∂c
=
−b
b+ d

< 0
∂Q∗

∂d
=
b(a+ c)

(b+ d)
2 > 0

2.

∂Y ∗

∂I0
(investment multiplier) =

∂Y ∗

∂α
(consumption multiplier)

=
1

1− β + βδ
> 0

∂Y ∗

∂β
=
−γ + (1− δ)(α+ I0 +G0)

(1− β + βδ)
2

=
−γ + (1− δ)Y ∗

(1− β + βδ)
2 [by (7.18)]

=
Y ∗ − T ∗

(1− β + βδ)
2 [by (7.17)]
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Assuming non-confiscationary taxation, we can take
∂Y ∗

∂β
to be positive; an increase in the

marginal propensity to consume raises the equilibrium income.

3.

(a) Nine.

(b)
∂x∗1
∂d1

=
0.66

0.384

∂x∗1
∂d2

=
0.30

0.384

∂x∗1
∂d3

=
0.24

0.384
∂x∗2
∂d1

=
0.34

0.384

∂x∗2
∂d2

=
0.62

0.384

∂x∗2
∂d3

=
0.24

0.384
∂x∗3
∂d1

=
0.21

0.384

∂x∗3
∂d2

=
0.27

0.384

∂x∗3
∂d3

=
0.60

0.384

or
∂x∗

∂d1
=

1

0.384

⎡⎢⎢⎢⎣
0.66

0.34

0.21

⎤⎥⎥⎥⎦ ∂x∗

∂d2
=

1

0.384

⎡⎢⎢⎢⎣
0.30

0.62

0.27

⎤⎥⎥⎥⎦ ∂x∗

∂d3
=

1

0.384

⎡⎢⎢⎢⎣
0.24

0.24

0.60

⎤⎥⎥⎥⎦
Exercise 7.6

1.

(a) |J | =

¯̄̄̄
¯̄ 6x1 1

(36x31 + 12x1x2 + 48x1) (6x21 + 2x2 + 8)

¯̄̄̄
¯̄ = 0

The function is dependent.

(b) |J | =

¯̄̄̄
¯̄ 6x1 4x2

5 0

¯̄̄̄
¯̄ = −20x2

Since |J | is not identically zero, the functions are independent

2.

(a) |J | =

¯̄̄̄
¯̄̄̄
¯
v11 v12 v13

v21 v22 v23

v31 v32 v33

¯̄̄̄
¯̄̄̄
¯ = |V |

(b) Since V has an inverse matrix (I−A), it must be nonsingular, and so |V | 6= 0, or |J | 6= 0.
The equations in (7.22) are thus functionally independent.
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CHAPTER 8

Exercise 8.1

1.

(a) dy = −3
¡
x2 + 1

¢
dx

(b) dy = (14x− 51) dx

(c) dy =
1− x2

(x2 + 1)
2 dx

2. ²MY =

dM

dY
M

Y

=
marginal propensity to import
average propensity to import

3.

(a)
dC

dY
= b

C

Y
=
a+ bY

Y

(b) ²CY =
dC
dY
C
Y

=
bY

a+ bY
> 0

(c) Since bY < a+ bY , it follows that ²CY < 1.

4. Since Q = kP−n, with dQ
dP = −nkPn−1 and Q

P = kPn−1, the point elasticity of demand is

²d = −n = a constant.

(a) No.

(b) When n = 1, the demand function is Q = k
P , which plots as a rectangular hyperbola,

with a unitary point elasticity everywhere.

5.

(a) Any positively sloped straight line emanating from the point of origin will do. [see the

broken line in Fig. 8.3b.]

(b) The equation for such a line is y = bx (with zero vertical intercept), so that dy/dx = b =

y/x. Hence, by (8.6), the elasticity is 1, a constant.
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6. (a) the price elasticity of demand is

∈d= ∂Q

∂P

µ
P

Q

¶
where the partial derivative with respect to price is

∂Q

∂P
= −2

and Q = 100− 2(20) + 0.02(5000) = 160.Therefore

∈d= (−2) 20
160

= −1
4

(b) The income elasticity of demand is

η =
∂Q

∂Y

µ
Y

Q

¶
where the partial derivative with respect to income is

∂Q

∂Y
= 0.02

Substituting the relevant values

η = (0.02)
5000

160
= 0.625

Exercise 8.2

1. Let ∇U be the row vector [U1, . . . , Un], and dx be the column vector [dx1, . . . , dxn]. Then

dU = ∇Udx.

2.

(a) dz = (6x+ y) dx+
¡
x− 6y2

¢
dy

(b) dU = (2 + 9x2) dx1 + (9x1 + 2x2) dx2

3.

(a) dy =
x2

(x1 + x2)
2 dx1 −

x1

(x1 + x2)
2 dx2

(b) dy = 2
³

x2
x1+x2

´2
dx1 + 2

³
x1

x1+x2

´2
dx2
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4.

∂Q

∂P
= 2bP, thus ²QP = 2bP

P

Q
=

2bP 2

a+ bP 2 +R1/2
;

dQ

dR
=

1

2
R−1/2, thus ²QR =

1

2
R−1/2

R

Q
=

R1/2

2
¡
a+ bP 2 +R1/2

¢ .
5.

∂

∂P
²QP =

4bP
¡
a+R1/2

¢¡
a+ bP 2 +R1/2

¢2 R 0 as ³a+R1/2´ R 0
∂

∂R
²QP =

−bP 2R−1/2¡
a+ bP 2 +R1/2

¢2 < 0
∂

∂P
²QR =

−bPR−1/2¡
a+ bP 2 +R1/2

¢2 < 0
∂

∂R
²QR =

R1/2
¡
a+ bP 2

¢
4
¡
a+ bP 2 +R1/2

¢2 R 0 as ¡a+ bP 2¢ R 0
Each of these derivatives adheres to a single sign, thus each elasticity varies with P and R in a

strictly monotonic function. (Note that even ∂
∂P ²QP adheres to a single sign, because in the

context of that derivative, R is a constant, so that
¡
a+R1/2

¢
has a single magnitude with a

single sign. The same reasoning applies also to ∂
∂R²QR.)

6. ²XP =
∂X
∂P
X
P

=
−2P−3

Y
1/2
f P−1 + P−3

=
−2

Y
1/2
f P 2 + 1

7.

(a)

Ux = 15x2 − 12y

Uy = −12x− 30y4

dU = (15x2 − 12y)dx− (12x− 30y4)dy

(b)

Ux = 14xy3

Uy = 21x2y2

dU = (14xy3)dx+ (21x2y2)dy
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(c)

Ux = 3x2(8) + (8x− 7y)(6x)

Uy = 3x2(−7) + (8x− 7y)(0)

dU = (72x2 − 42xy)dx− 21x2dy

(d)

Ux = (5x2 + 7y)(2) + (2x− 4y3)(10x)

Uy = (5x2 + 7y)(−12y2) + (2x− 4y3)(7)

dU = (30x2 − 40xy3 + 14y)dx− (112y3 + 60x2y2 − 14x)dy

(e)

Ux =
(x− y)(0)− 9y3(1)

(x− y)2

Uy =
(x− y)(27y2)− 9y3(−1)

(x− y)2

dU =
−9y3
(x− y)2 dx+

27xy2 − 18y3
(x− y)2 dy

(f)

Ux = 3(x− 3y)2(1)

Uy = 3(x− 3y)2(−3)

dU = 3(x− 3y)2dx− 9(x− 3y)2dy

Exercise 8.3

1.

(a) dz = 6xdx+ (y dx+ x dy)− 6y2 dy = (6x+ y) dx+
¡
x− 6y2

¢
dy

(b) dU = 2 dx1 + (9x2 dx1 + 9x1 dx2) + 2x2 dx2 = (2 + 9x2) dx1 + (9x1 + 2x2) dx2

2.

(a) dy = (x1+x2) dx1−x1(dx1+dx2)
(x1+x2)

2 = x2dx1−x1dx2
(x1+x2)

2
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(b) dy = (x1+x2)(2x2 dx1+2x1 dx2)−2x1x2(dx1+dx2)
(x1+x2)

2 =
2x22dx1+2x

2
1dx2

(x1+x2)
2

3.

(a) dy = 3 [(2x2 − 1) (x3 + 5) dx1 + 2x1 (x3 + 5) dx2 + x1 (2x2 − 1) dx3]

(b) dy = 3 (2x2 − 1) (x3 + 5) dx1

4. Rule II: d (cun) =
¡
d
ducu

n
¢
du = cnun−1 du

Rule III: d (u± v) = ∂(u±v)
∂u du+ ∂(u±v)

∂v dv = 1 du+ (±1) dv = du± dv

Rule IV: d (uv) = ∂(uv)
∂u du+ ∂(uv)

∂v dv = v du+ u dv

Rule V: d
¡
u
v

¢
= ∂(u/v)

∂u du+ ∂(u/v)
∂v dv = 1

v du−
u
v2 dv =

1
v2 (v du− u dv)

Exercise 8.4

1.

(a) dz
dy = zx

dx
dy + zy = (5 + y)6y + x− 2y = 28y + 6y2 + x = 28y + 9y2

(b) dz
dy = 4y −

8
y3

(c) dz
dy = −15x+ 3y = 108y − 30

2.

(a) dz
dt =

∂z
∂x

dx
dt +

∂z
∂y

dy
dt = (2x− 8y) (3)+

¡
−8x− 3y2

¢
(−1) = 14x−24y+3y2 = 3t2+60t−21

(b) dz
dt = 7(4t) + t(1) + v = 29t+ v = 30t+ 1

(c) dz
dt = bfx + kfy + ft

3. dQ
dt = aαAK

α−1Lβ + bβAKαLβ−1 +A0(t)KαLβ =
£
aα A

K + bβ
A
L +A

0(t)
¤
KαLβ

4.

(a) H
WH
u

=
∂W

∂x

dx

du
+

∂W

∂y

∂y

∂u
+

∂W

∂u
= (2ax+ by) (α) + (bx)(γ) + c

= α [2a (αu+ βv) + bγu] + bγ (αu+ βv) + cH
WH
v

=
∂W

∂x

dx

dv
+

∂W

∂y

∂y

∂v
= (2ax+ by) (β) + (bx)(0)

= β [2a (αu+ βv) + bγu]
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(b)
H
WH
u
= 10uf1 + f2

H
WH
v
= 3f1 − 12v2f2

5.

6.
H
yH
v
= ∂y

∂x1
∂x1
∂v +

∂y
∂x2

∂x2
∂v +

∂y
∂v

Exercise 8.5

1.

(a) dy
dx = −

fx
fy
= − (−6)1 = 6

(b) dy
dx = −

fx
fy
= − (−12)3 = 4

(c) dy
dx = −

fx
fy
= −(2x+6)−1 = 2x+ 6

2.

(a) dy
dx = −

fx
fy
= − 6x+2y

12y2+2x

(b) dy
dx = −

fx
fy
= −60x4−2 = 30x4

(c) dy
dx = −

fx
fy
= − 14x+2y2

36y3+4xy

(d) dy
dx = −

fx
fy
= −18x2−3 = 6x2

3.

(a)

dy

dx
= −fx

fy
= − 2xy

3 + yz

3x2y2 + xz

dy

dz
= −fz

fy
= − 2z + xy

3x2y2 + xz
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(b)

dy

dx
= −fx

fy
= −3x

2z2 + 4yz

3y2 + 4xz

dy

dz
= −fz

fy
= −2x

3z + 4xy

3y2 + 4xz

(c)

dy

dx
= −fx

fy
= − 6xy3 + z2y2 + 4y3zx3

9x2y2 + 2xz2y + 3y2zx4 + 2yz

dy

dz
= −fz

fy
= − 2xzy2 + y3x4 + y2

9x2y2 + 2xz2y + 3y2zx4 + 2yz

4.

(a)
∂U

∂x2
=
− ∂F

∂x2
∂F
∂U

,
∂U

∂xn
= −

∂F
∂xn
∂F
∂U

,
∂x3
∂x2

= −
∂F
∂x2
∂F
∂x3

,
∂x4
∂xn

= −
∂F
∂xn
∂F
∂x4

(b) The first two are marginal utilities; the last two are slopes of indifference curves (negatives

of marginal rates of substitution).

5.

(a) Point (y=3, x=1) does satisfy the given equation. Moreover, Fx = 3x2 − 4xy + 3y2 and
Fy = −2x2 + 6xy are continuous, and Fy = 16 6= 0 at the given point. Thus an implicit
function is defined, with:

dy
dx = −

Fx
Fy
= −3x

2−4xy+3y2
−2x2+6xy = −1816 = −

9
8 at the given point

(b) The given point satisfies this equation also. Since both Fx = 4x+4y and Fy = 4x− 4y3

are continuous, and Fy = −104 6= 0 at the given point, an implicit function is again

defined.

dy
dx = −

4x+4y
4x−4y3 = −

16
−104 = −

2
13 at the given point

6. Point (x = 1, y = 2, z = 0) satisfies the given equation. Since the three derivatives Fx =

2x + 3y, Fy = 3x + 2z + 2y, Fz = 2y + 2z are all continuous, and Fz = 4 6= 0 at the given

point, an implicit function z = f(x, y) is defined. At the given point, we have

∂z
∂x = −

2x+3y
2y+2z = −2

∂z
∂y = −

3x+2z+2y
2y+2z = −74

7. The given equation can be solved for y, to yield the function y = x (with the 450 line as its

graph). Yet, at the point (0, 0), which satisfies the given equation and is on the 450 line,

46

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



we find Fy = −3 (x− y)2 = 0, which violates the condition of a nonzero Fy as cited in the

theorem. This serves us to show that this condition is not a necessary condition for the

function y = f (x) to be defined.

8. By (8.23), ∂z
∂x

∂x
∂y

∂y
∂z =

³
−FxFz

´³
−FyFx

´³
−FzFy

´
= −1.

9. At least one of the partial derivatives in the vector of constants in (8.28’) must be nonzero;

otherwise, the variable x1 does not affect F 1, F 2 and F 3, and has no legitimate status as an

argument in the F functions in (8.24).

10. To find the nonincome-tax multiplier ∂Y ∗

∂γ (along with ∂C∗

∂γ and ∂T∗

∂γ ), the relevant matrix

equation is ⎡⎢⎢⎢⎣
1 −1 0

−β 1 β

−δ 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

∂Y ∗

∂γ

∂C∗

∂γ

∂T∗

∂γ

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−∂F 1

∂γ

−∂F 2

∂γ

−∂F 3

∂γ

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
Thus

∂Y ∗

∂γ
=

¯̄̄̄
¯̄̄̄
¯
0 −1 0

0 1 β

1 0 1

¯̄̄̄
¯̄̄̄
¯

|J | =
−β

1− β + βδ
[by (8.31)]

This result does check with (7.20).

Exercise 8.6

1.

(a) S’=marginal propensity to save; T’=marginal income tax rate; I’=marginal propensity

to invest.

(b) Writing the equilibrium condition as F (Y ;G0) = S(Y ) + T (Y )− I(Y )−G0 = 0, we find
that F has continuous partial derivatives and ∂F

∂Y = S
0 + T 0 − I 0 6= 0. Thus the implicit-

function theorem is applicable. The equilibrium identity is: S(Y ∗)+T (Y ∗)−I(Y ∗)−G0 ≡
0.

(c) By the implicit-function rule, we have³
dY ∗

dG0

´
= − −1

S0+T 0−I0 =
1

S0+T 0−I0 > 0

As increase in G0 will increase the equilibrium national income.

47

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



2.

(a) F (P ;Y0, T0) = D (P, Y0)− S (P, T0) = 0

(b) F has continuous partial derivatives, and FP = DP − SP 6= 0, thus the implicit-function
theorem is applicable. The equilibrium identity is: D(P ∗, Y0)− S (P ∗, T0) ≡ 0.

(c) By the implicit-function rule,³
∂P∗

∂Y0

´
= − Dy0

DP∗−SP∗ > 0
³
∂P∗

∂T0

´
= − −ST0

DP∗−SP∗ > 0

An increase in income or taxes will raise the equilibrium price.

(d) The supply function implies Q∗ = S(P ∗, T0); thus
³
∂Q∗

∂Y0

´
= ∂S

∂P∗

³
∂P∗

∂Y0

´
> 0.

The demand function implies Q∗ = D (P ∗, Y0); thus
³
∂Q∗

∂T0

´
= ∂D

∂P∗

³
∂P∗

∂T0

´
< 0.

Note: To use the demand function to get
³
∂Q∗

∂Y0

´
would be more complicated, since Y0

has both direct and indirect effects on Q∗d. A similar complication arises when the supply

function is used to get the other comparative-static derivative.

3. Writing the equilibrium conditions as

F 1 (P,Q;Y0, T0) = D (P, Y0)−Q = 0

F 2 (P,Q;Y0,T0) = S(P, T0)−Q = 0

We find |J | =

¯̄̄̄
¯̄ DP −1
SP −1

¯̄̄̄
¯̄ = SP −DP 6= 0. Thus the implicit-function theorem still applies,

and we can write the equilibrium identities

D (P ∗, Y0)−Q∗ ≡ 0

S (P ∗, T0)−Q∗ ≡ 0

Total differentiation yields

DP∗dP
∗ − dQ∗ = −DY0dY0

SP∗dP
∗ − dQ∗ = −ST0dT0

When Y0 is disequilibrating factor (dT0 = 0), we have⎡⎣ DP∗ −1
SP∗ −1

⎤⎦⎡⎣ ³
∂P∗

∂Y0

´
³
∂Q∗

∂Y0

´
⎤⎦ =

⎡⎣ −DY0
0

⎤⎦
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Thus
³
∂P∗

∂Y0

´
=

DY0

SP∗−DP∗
> 0 and

³
∂Q∗

∂Y0

´
=

DY0SP∗

SP∗−DP∗
> 0

When T0 is the disequilibrium factor (dY0 = 0), we can similarly get
³
∂P∗

∂T0

´
=

−ST0
SP∗−DP∗

> 0

and
³
∂Q∗

∂T0

´
=
−ST0DP∗

SP∗−DP∗
< 0

4.

(a) ∂D/∂P < 0, and ∂D/∂t0 > 0

(b) F (P ; t0, Qs0) = D (P, t0)−Qs0 = 0

(c) Since the partial derivatives of F are all continuous, and FP = ∂D
∂P 6= 0, the implicit-

function theorem applies.

(d) To find
³
∂P∗

∂t0

´
, use the implicit-function rule on the equilibrium identity D (P ∗, t0) −

Qs0 ≡ 0, to get µ
∂P ∗

∂t0

¶
= −

∂D
∂t0
∂D
∂P∗

> 0

An increase in consumers’ taste will raise the equilibrium price.

5.

(a) Yes.

(b) kY + L (i)

(c) We can take the two equilibrium conditions as the equilibrium F 1 = 0 and F 2 = 0,

respectively. Since the Jacobian is nonzero:

|J | =

¯̄̄̄
¯̄ ∂F 1

∂Y
∂F 1

∂i

∂F 2

∂Y
∂F 2

∂i

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ 1− C 0 −I 0

k L0

¯̄̄̄
¯̄ = L0(1− C0) + kI 0 < 0

the implicit-function theorem applies, and we have the equilibrium identities

Y ∗ − C (Y ∗)− I (i∗)−G0 ≡ 0

kY ∗ + L (i∗)−Ms0 ≡ 0

with Ms0 as the disequilibrating factor, we can get the equation⎡⎣ 1− C 0 −I 0

k L0

⎤⎦⎡⎣ ∂Y ∗

∂G0

∂i∗

∂G0

⎤⎦ =
⎡⎣ 1

0

⎤⎦
This yields the resultsµ

∂Y ∗

∂G0

¶
=
L0

|J | > 0 and
µ
∂i∗

∂G0

¶
= − k

|J | > 0
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(c) Although there lacks a dynamic adjustment mechanism for price, the demand function

contains a dP
dt term. This gives rise to a differential equation and makes the model

dynamic.

Exercise 15.3

We shall omit all constants of integration in this Exercise.

1. Since u = 5, w = 15, and
R
u dt = 5t, solution formula (14.15) gives

y(t) = e−5t
¡
A+

R
15e5tdt

¢
= e−5t

¡
A+ 3e5t

¢
= Ae−5t + 3

The same result can be obtained also by using formula (14.5).

2. Since u = 2t, w = 0, and
R
u dt = t2, solution formula (14.14) gives us y(t) = Ae−t

2

.

3. Since u = 2t, w = t, and
R
udt = t2, formula (14.15) yields

y(t) = e−t
2
³
A+

R
tet

2

dt
´
= e−t

2
³
A+ 1

2e
t2
´
= Ae−t

2

+ 1
2

Setting t = 0, we find y(0) = A + 1
2 ; i.e., A = y(0) − 1

2 = 1. Thus the definite solution is

y(t) = e−t
2

+ 1
2 .

4. Since u = t2, w = 5t2, and
R
udt = t3

3 , formula (14.15) gives us

y(t) = e−
t3

3

³
A+

R
5t2e

t3

3 dt
´
= e−

t3

3

³
A+ 5e

t3

3

´
= Ae−

t3

3 + 5

Setting t = 0, we find y(0) = A + 5; thus A = y(0) − 5 = 1. The definite solution is

y(t) = e−
t3

3 + 5.

5. Dividing through by 2, we get dy
dt + 6y = −et. Now with u = 6, w = −et, and

R
u dt = 6t,

formula (14.15) gives us

y(t) = e−6t
¡
A+

R
−ete6tdt

¢
= e−6t

¡
A− 1

7e
7t
¢
= Ae−6t − 1

7e
t

Setting t = 0, we find y(0) = A − 1
7 ; i.e., A = y(0) + 1

7 = 1. The definite solution is

y(t) = e−6t − 1
7e
t

6. Since u = 1, w = t, and
R
udt = t, the general solution is

y(t) = e−t
¡
A+

R
tetdt

¢
= e−t [A+ et (t− 1)] [by Example 17, Section 13.2]

= Ae−t + t− 1
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Exercise 15.4

1.

(a) With M = 2yt3 and N = 3y2t2, we have ∂M
∂t = 6yt

2 = ∂N
∂y .

Step i: F (y, t) =
R
2yt3dy + ψ(t) = y2t3 + ψ(t)

Step ii: ∂F
∂t = 3y

2t2 + ψ0(t) = N = 3y2t2; thus ψ0 (t) = 0

Step iii: ψ (t) =
R
0 dt = k

Step iv: F (y, t) = y2t3 + k, so the general solution is

y2t3 = c or y(t) =
¡
c
t3

¢ 1
2

(b) With M = 3y2t and N = y3 + 2t, we have ∂M
∂t = 3y

2 = ∂N
∂y .

Step i: F (y, t) =
R
3y2t dy + ψ(t) = y3t+ ψ(t)

Step ii: ∂F
∂t = y

3 + ψ0(t) = N = y3 + 2t; thus ψ0(t) = 2t

Step iii: ψ(t) =
R
2t dt = t2 [constant omitted]

Step iv: F (y, t) = y3t+ t2, so the general solution is

y3t+ t2 = c or y(t) =
³
c−t2
t

´ 1
3

(c) With M = t (1 + 2y) and N = y(1 + y), we have ∂M
∂t = 1 + 2y =

∂N
∂y .

Step i: F (y, t) =
R
t(1 + 2y)dy + ψ(t) = yt+ y2t+ ψ(t)

Step ii: ∂F
∂t = y + y

2 + ψ0(t) = N = y(1 + y); thus ψ0(t) = 0

Step iii: ψ(t) =
R
0 dt = k

Step iv: F (y, t) = yt+ y2t+ k, so the general solution is

yt+ y2t = c

(d) The equation can be rewritten as 4y3t2dy +
¡
2y4t+ 3t2

¢
dt = 0, with M = 4y3t2 and

N = 2y4t+ 3t2, so that ∂M
∂t = 8y

3t = ∂N
∂y .

Step i: F (y, t) =
R
4y3t2 dy + ψ(t) = y4t2 + ψ(t)

Step ii: ∂F
∂t = 2y

4t+ ψ0(t) = N = 2y4t+ 3t2; thus ψ0(t) = 3t2

Step iii: ψ(t) =
R
3t2 dt = t3 [constant omitted]

Step iv: F (y, t) = y4t2 + t3, so the general solution is

y4t2 + t3 = c or y(t) =
³
c−t3
t2

´ 1
4
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2.

(a) Inexact; y is an integrating factor.

(b) Inexact; t is an integrating factor.

3. Step i: F (y, t) =
R
M dy + ψ(t)

Step ii: ∂F
∂t =

∂
∂t

R
M dy + ψ0(t) = N ; thus ψ0(t) = N − ∂

∂t

R
M dy

Step iii: ψ(t) =
R ¡
N − ∂

∂t

R
Mdy

¢
dt =

R
N dt−

R ¡
∂
∂t

R
M dy

¢
dt

Step iv: F (y, t) =
R
M dy +

R
N dt−

R ¡
∂
∂t

R
M dy

¢
dt

Setting F (y, t) = c, we obtain the desired result.

Exercise 15.5

1. (a) i. Separable; we can write the equation as 2
ydy +

2
t dt = 0.

ii. Rewritten as dy
dt +

1
t y = 0, the equation is linear.

(b)

i. Separable; multiplying by (y + t), we get y dy + 2t dt = 0.

ii. Rewritten as dydt = −2ty−1, the equation is a Bernoulli equation with R = 0, T = −2t
and m = −1. Define z = y1−m = y2. Then we can obtain from (14.24’) a linearized

equation

dz − 2(−2)t dt = 0 or dz
dt + 4t = 0

(c)

i. Separable; we can write the equation as y dy + t dt = 0.

ii. Reducible; it is a Bernoulli equation with R = 0, T = −t, and m = −1.

(d)

i. Separable; we can write the equation as 1
3y2 dy − t dt = 0

ii. Yes; it is a Bernoulli equation with R = 0, T = 3t, m = 2.
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2.

(a) Integrating 2
ydy+

2
t dt = 0 after cancelling the common factor 2, we get ln y+ ln t = c, or

ln yt = c. The solution is

yt = ec = k or y(t) = k
t

Check: dydt = −kt−2 = −
y
t (consistent with the given equation).

(b) Cancelling the common factor 1
y+t , and integrating we get

1
2y
2+t2 = c. Thus the solution

is

y(t) =
¡
2c− 2t2

¢ 1
2 =

¡
k − 2t2

¢ 1
2

Check: dy
dt =

1
2

¡
k − 2t2

¢− 1
2 (−4t) = −2ty (which is equivalent to the given differential

equation).

3. Integrating y dy + t dt = 0, we get 1
2y
2 + 1

2 t
2 = c, or y2 + t2 = 2c = A. Thus the solution

is y(t) =
¡
A− t2

¢ 1
2 . Treating it as a Bernoulli equation with R = 0, T = −t, m = −1, and

z = y1−m = y2, we can use formula (14.24’) to obtain the linearized equation dz + 2t dt = 0,

or dzdt = −2t, which has the solution z = A− t2. Reverse substitution then yields the identical
answer

y2 = A− t2 or y(t) =
¡
A− t2

¢ 1
2

4. Integrating 1
3y
−2dy − t dt = 0, we obtain −13y−1 −

1
2 t
2 = c, or y−1 = −3c − 3

2 t
2 = A − 3

2 t
2.

The solution is y(t) = 1
A− 3

2 t
2 .

Treating it as a Bernoulli equation, on the other hand, we have R = 0, T = 3t, and m = 2.

Thus we can write dz + 3t dt = 0, or dz
dt = −3t, which has the solution z = A − 3

2 t
2. Since

z = y1−m = y−1, we have y(t) = 1
z , which represents an identical solution.

5. The derivative of the solution is dz
dt = 2At + 2. The linearized equation itself implies on

the other hand that dz
dt =

2z
t − 2. But since z = At2 + 2t, the latter result amounts to

2 (At+ 2)− 2 = 2At+ 2. Thus the two results are identical.

Exercise 15.6

1. (a) and (d): The phase line is upward-sloping, and the equilibrium is accordingly dynamically

unstable.
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(b) and (c): The phase line is downward-sloping, and the equilibrium is dynamically stable.

2.

(a) The phase line is upward-sloping for nonnegative y; the equilibrium y∗ = 3 is dynamically

unstable.

(b) The phase line slopes upward from the point of origin, reaches a peak at the point
¡
1
4 ,

1
16

¢
,

and then slopes downward thereafter. There are two equilibriums, y∗ = 0 and y∗ = 1
2 ;

the former is dynamically unstable, but the latter is dynamically stable.

3.

(a) An equilibrium can occur only when dy
dt = 0, i.e., only when y = 3, or y = 5.

(b) d
dy

³
dy
dt

´
= 2y − 8 =

⎧⎨⎩ −2 when y = 3

+2 when y = 5

Since this derivative measures the slope of the phase line, we can infer that the equilibrium

at y = 3 is dynamically stable, but the equilibrium at y = 5 is dynamically unstable.

Exercise 15.7

1. Upon dividing by k throughout, the equation becomes

k̇
k =

sφ(k)
k = λ

Since the first term on the right is equal to sQL
K
L

= sQ
K = K̇

K , the equation above means that:

growth rate of KL = growth rate of K− growth rate of L

2. I ≡ dK
dt =

d
dtAe

λt = Beλt. Thus net investment, I, obviously also grows at the rate λ.

3. The rate of growth of Q should be the sum of the rates of growth of T (t) and of f(K,L). The

former rate is given to be ρ; the latter rate is λ. Hence we have rQ = ρ+ λ.

4. The assumption of linear homogeneity (constant returns to scale) is what enables us to focus

on the capital-labor ratio.
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5.

(a) There is a single equilibrium ȳ which lies between 1 and 3, and is dynamically stable.

(b)

There are two equilibriums: ȳ1 (negative) is dynamically stable, and ȳ2 (positive) is

dynamically unstable
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CHAPTER 16

Exercise 16.1

1. (a) By (16.3), yp = b
a2
= 2

5 (b) By
³
16.3

0
´
, yp = bt

a1
= 7t

(c) By (16.3), yp = 9/3 = 3 (d) By (16.3), yp = −4/− 1 = 4
(e) By

¡
16.3”

¢
, yp = bt2

2 = 6t2

2.

(a) With a1 = 3 and a2 = −4, we find r1, r2 = 1
2 (−3± 5) = 1,−4. Thus yc = A1et +A2e−4t

(b) With a1 = 6 and a2 = 5, we find r1, r2 = 1
2 (−6± 4) = −1,−5. Thus yc = A1e−t+A2e−5t

(c) With a1 = −2 and a2 = 1, we get repeated roots r1 = r2 = 1. Thus, by (16.9) yc =

A3e
t +A4te

t

(d) With a1 = 8 and a2 = 16, we find r1 = r2 = −4. Thus we have yc = A3e−4t +A4te−4t

3.

(a) By (16.3), yp = −3. Adding this to the earlier-obtained yc, we get the general solution
y(t) = A1e

t+A2e
−4t−3. Setting t = 0 in this solution, and using the first initial condition,

we have y(0) = A1 +A2 − 3 = 4. Differentiating y(t) and then setting t = 0, we find via
the second initial condition that y0(0) = A1 − 4A2 = 2. Thus A1 = 6 and A2 = 1. The

definite solution is y(t) = 6et + e−4t − 3.

(b) yp = 2. The general solution is y(t) = A1e−t + A2e−5t + 2. The initial condition give us

y(0) = A1 + A2 + 2 = 4, and y0(0) = −A1 − 5A2 = 2. Thus A1 = 3 and A2 = −1. The
definite solution is y(t) = 3e−t − e−5t + 2.

(c) yp = 3. The general solution is y(t) = A3e
t + A4te

t + 3. Since y(0) = A3 + 3 = 4, and

y0(0) = 1+A4 = 2, we have A3 = 1, and A4 = 1. The definite solution is y(t) = et+tet+3.

(d) yp = 0. The general solution is y(t) = A3e
−4t + A4te

−4t. Since y(0) = A3 = 4, and

y0(0) = −4A3 + A4 = 2, we have A3 = 4, and A4 = 18. Thus, the definite solution is

y(t) = 4e−4t + 18te−4t.

4. (a) Unstable (b) Stable (c) Unstable (d) Stable
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(a) Setting t = 0 in the solution, we get y(0) = 2 + 0 + 3 = 5. This satisfies the first initial

condition. The derivative of the solution is y0(t) = −6e−3t− 3te−3t+ e−3t, implying that
y0(0) = −6− 0 + 1 = −5. This checks with the second initial condition

(b) The second derivative is y”(t) = 18e−3t + 9te−3t − 3e−3t − 3e−3t = 12e−3t + 9te−3t.

Substitution of the expressions for y”, y0 and y into the left side of the differential equa-

tion yields the value of 27, since all exponential terms cancel out. Thus the solution is

validated.

5. For the case of r < 0, we first rewrite tert as t/e−rt, where both the numerator and the

denominator tend to infinity as t tends to infinity. Thus, by L’Hôpital’s rule,

lim
t→∞

t

e−rt
= lim
t→∞

1

−re−rt = 0 (case of r < 0)

For the case of r > 0, both component t and the component ert will tend to infinity. Thus

their product tert will also tend to infinity.

For the case of r = 0, we have tert = te0 = t. Thus tert tends to infinity as t tends to infinity

Exercise 16.2

1. (a) r1, r2 =
1
2 (3±

√
−27) = 3

2 ±
3
2

√
3i

(b) r1, r2 =
1
2 (−2±

√
−64) = −1± 4i

(c) x1, x2 =
1
4 (−1±

√
−63) = −14 ±

3
4

√
7i

(d) x1, x2 =
1
4 (1±

√
−7) = 1

4 ±
1
4

√
7i

2. (a) Since 180 degree = 3.14159 radians,

1 radian = 180
3.14159 degrees = 57.3 degrees (or 57

◦180)

(b) Similarly, 1 degree = 3.14159
180 radians = 0.01745 radians.

3.

(a) sin2 θ+cos2 θ ≡
¡
v
R

¢2
+
¡
h
R

¢2 ≡ v2+h2

R2 ≡ 1, because R is defined to be
¡
v2 + h2

¢1/2
. This

result is true regardless of the value of θ; hence we use the identity sigh.

(b) When θ = π
4 , we have v = h, so R =

√
2v2 = v

√
2
¡
= h
√
2
¢
. Thus, sin π

4 = cos
π
4 =

v
R =

v
v
√
2
= 1√

2
=
√
2
2 .
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4.

(a) sin 2θ ≡ sin (θ + θ) ≡ sin θ cos θ + cos θ sin θ ≡ 2 sin θ cos θ [Here,θ1 = θ2 = θ]

(b) cos 2θ ≡ cos (θ + θ) ≡ cos θ cos θ− sin θ sin θ ≡ cos2 θ− sin2 θ ≡ cos2 θ+ sin2 θ− 2 sin2 θ ≡
1− 2 sin2 θ

(c) sin (θ1 + θ2)+sin (θ1 − θ2) ≡ (sin θ1 cos θ2 + cos θ1 sin θ2)+(sin θ1 cos θ2 − cos θ1 sin θ2) ≡
2 sin θ1 cos θ2

(d) 1 + tan2 θ ≡ 1 + sin2 θ
cos2 θ ≡

cos2 θ+sin2 θ
cos2 θ ≡ 1

cos2 θ

(e) sin
¡
π
2 − θ

¢
≡ sin π

2 cos θ − cos
π
2 sin θ ≡ cos θ − 0 ≡ cos θ

(f) cos
¡
π
2 − θ

¢
≡ cos π2 cos θ + sin

π
2 sin θ ≡ 0 + sin θ ≡ sin θ

5.

(a) d
dθ sin f (θ) =

d sin f(θ)
df(θ)

df(θ)
dθ = cos f (θ) · f 0 (θ) = f 0 (θ) · cos f (θ)

d
dθ cos f (θ) =

d cos f(θ)
df(θ)

df(θ)
dθ = − sin f (θ) · f 0 (θ) = −f 0 (θ) · sin f (θ)

(b) d
dθ cos θ

3 = −3θ2 sin θ3

d
dθ sin

¡
θ2 + 3θ

¢
= (2θ + 3) cos

¡
θ2 + 3θ

¢
d
dθ cos e

θ = −eθ sin eθ

d
dθ sin

1
θ = −

1
θ2
cos 1θ

6.

(a) e−iπ = cosπ − i sinπ = −1− 0 = −1

(b) e−iπ/3 = cos π3 + i sin
π
3 =

1
2 + i

√
3
2 = 1

2

¡
1 +
√
3i
¢

(c) e−iπ/4 = cos π4 + i sin
π
4 =

1√
2
+ i 1√

2
= 1√

2
(1 + i) =

√
2
2 (1 + i)

(d) e−3iπ/4 = cos 3π4 − i sin
3π
4 = −

1√
2
− i 1√

2
= − 1√

2
(1 + i) = −

√
2
2 (1 + i)

7.

(a) With R = 2 and θ = π
6 , we find h = 2 cos π6 =

√
3 and v = 2 sin π

6 = 1. The Cartesian

form is
√
3 + i

(b) With R = 4 and θ = π
3 , we find h = 4cos

π
3 = 2 and v = 4 sin

π
3 = 2

√
3. The Cartesian

form is 2 + 2
√
3i.
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(c) Taking the complex number as
√
2e+iθ, we have R =

√
2 and θ = −π

4 . So h =
√
2 cos −π4 =

√
2 cos π4 [by (16.14)] = 1, and v =

√
2 sin −π4 =

√
2
¡
− sin π

4

¢
= −1. The Cartesian form is

h+ vi = 1− i. Alternatively, taking the number as
√
2e−iθ, we could have θ = π

4 instead,

with the result that h = v = 1. The Cartesian form is then h − vi = 1 − i, the same
answer.

8.

(a) With h = 3
2 and v =

3
√
3
2 , we find R = 3. Since θ must satisfy cos θ = h

R = 1
2 and

sin θ = v
R =

√
3
2 Table 16.2 gives us θ = π

3 . Thus,
3
2 +

3
√
3

2 i = 3
¡
cos π3 + i sin

π
3

¢
= 3eiπ/3.

(b) With h = 4
√
3 and v = 4, we find R = 8. In order that cos θ = h

R =
√
3
2 and sin θ = v

R =
1
2 ,

we must have θ = π
6 . Hence, 4

¡√
3 + i

¢
= 8

¡
cos π6 + i sin

π
6

¢
= 8eiπ/6.

Exercise 16.3

1. a1 = −4, a2 = 8, b = 0. Thus yp = 0. Since h = 2, and v = 2, we have yc = e2t(A5 cos 2t +

A6 sin 2t). The general solution is the same as yc, since yp = 0. From this solution, we can

find that y(0) = A5 cos 0+A6 sin 0 = A5, and y0(0) = 2 (A5 +A6). Since the initial conditions

are y(0) = 3 and y0(0) = 7, we get A5 = 3 and A6 = 1
2 . The definite solution is therefore

y (t) = e2t(3 cos 2t+
1

2
sin 2t)

2. a1 = 4, a2 = 8, b = 2. Thus yp = 1
4 . Since h = −2, and v = 2, we have yc = e−2t(A5 cos 2t +

A6 sin 2t). The general solution is y(t) = yc + yp. From this solution, we can find y(0) =

A5+1/4, and y0(0) = −2A5+2A6, which, along with the initial conditions, imply that A5 = 2
and A6 = 4. Thus the definite solution is

y (t) = e−2t(2 cos 2t+ 4 sin 2t) +
1

4

3. a1 = 3, a2 = 4, b = 12. Thus yp = 3. Since h = −32 , and v =
√
7
2 , we have yc =

e−3t/2(A5 cos
√
7
2 t+A6 sin

√
7
2 t). The general solution is y(t) = yc+ yp. From this solution, we

can find y(0) = A5 + 3, and y0(0) = −32A5 +
√
7
2 A6, which, along with the initial conditions,

imply that A5 = −1 and A6 =
√
7
7 . Thus the definite solution is
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y (t) = e−3t/2(− cos
√
7

2
t+

√
7

7
sin

√
7

2
t) + 3

4. a1 = −2, a2 = 10, b = 5. Thus yp = 1
2 . Since h = 1, and v = 3, we have yc = et(A5 cos 3t +

A6 sin 3t). The general solution is y(t) = yc+yp. From this solution, we can find y(0) = A5+ 1
2 ,

and y0(0) = A5+3A6, which, in view of the initial conditions, imply that A5 = 512 and A6 = 1.

Thus the definite solution is

y (t) = et(5
1

2
cos 3t+ sin 3t) +

1

2

5. a1 = 0, a2 = 9, b = 3. Thus yp = 1
2 . Since h = 0, and v = 3, and thus yc = A5 cos 3t+A6 sin 3t.

The general solution is y(t) = yc + yp. From this solution, we can find y(0) = A5 + 1/3, and

y0(0) = 3A6, which, by the initial conditions, imply that A5 = 2/3 and A6 = 1. Thus the

definite solution is

y (t) =
2

3
cos 3t+ sin 3t+

1

3

6. After normalizing (dividing by 2), we have a1 = −6, a2 = 10, b = 20. Thus yp = 2. Since h = 3,
and v = 1, we have yc = e3t(A5 cos t+ A6 sin t). The general solution is y(t) = yc + yp. This

solution yields y(0) = A5 + 2, and y0(0) = 3A5 + A6, which, by the initial conditions, imply

that A5 = 2 and A6 = −1. Thus the definite solution is

y (t) = e3t(2 cos t− sin t) + 2

7. (a) 2 and 3 (b) 5 (c) 1, 4 and 6

Exercise 16.4

1.

(a) Equating Qd and Qs, and normalizing, we have

P” +
m− u
n− wP

0 − β + δ

n− wP = −
α+ γ

n− w (n 6= w)

(b) Pp =
α+γ
β+δ
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(c) Periodic fluctuation will be absent if

µ
m− u
n− w

¶2
≥ −4 (β + δ)

n− w

2.

(a) Substitution of Qd and Qs, into the market adjustment equation yields (upon normaliza-

tion)

P 00 +
jm− 1
jn

P 0 − β + δ

n
P = −α+ γ

n

(b) P̄ = P ∗ = α+γ
β+δ .

(c) Fluctuation will occur if

µ
jm− 1
jn

¶2
<
−4 (β + δ)

n

This condition cannot be satisfied if n > 0, for then the right-side expression will be

negative, and the square of a real number can never be less than a negative number.

(d) For case 3, dynamic stability requires that

h = −1
2

µ
jm− 1
jn

¶
< 0

Since n < 0 for Case 3, this condition reduces to

jm− 1 < 0

3.

(a) Equating Qd and Qs, and normalizing, we get

P” + P 0 − 5
2
P = 5

The particular integral is Pp = 2. The characteristic roots are complex, with h = 1
2 and

v = 3
2 . Thus the general solution is P (t) = e

t/2
¡
A5 cos

3
2 t+A6 sin

3
2 t
¢
+ 2. This can be

definitized to
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P (t) = et/2
µ
2 cos

3

2
t+ 2 sin

3

2
t

¶
+ 2

(b) The path is nonconvergent, and has explosive fluctuation.

Exercise 16.5

1.

(a) Substituting (16.33) into (16.34) yields a first-order differential equation in π:

dπ

dt
+ j (l − g)π = j (α− T − βU)

(b) A first-order differential equation has only one characteristic root. Since fluctuation is

produced by complex roots which come only in conjugate pairs, no fluctuation is now

possible.

2. Differentiating (16.33) and (16.35), we get

dp

dt
= −β dU

dt
+ g

dπ

dt
d2U

dt2
= k

dp

dt

Substitution yields

d2U

dt2
= −kβ dU

dt
+ kg

dπ

dt
= −kβ dU

dt
+ kgj (p− π) [by (16.34)]

To get rid of p and π, we note that (16.35) implies

p =
1

k

dU

dt
+m

and (16.33) implies

π =
p

g
− 1
g
(α− T − βU) =

1

g

µ
1

k

dU

dt
+m

¶
− 1
g
(α− T − βU)
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Using these to eliminate p and π, and rearranging, we then get the desired differential equation

in U:

d2U

dt2
+ [kβ + j (1− h)]dU

dt
+ (kjβ)U = kj[α− T − (1− h)m]

3.

(a) Under the assumption, (16.33) can be solved for p, to yield

p =
1

1− g (α− T − βU)

This gives the derivative

dp

dt
= − β

1− g
dU

dt
=

βkm

1− g −
βk

1− g p [by (16.35)]

Thus we have the differential equation

dp

dt
+

βk

1− g p =
βkm

1− g

(b) Substituting the p expression derived in (a) into (16.35), we obtain (upon rearranging)

dU

dt
+

kβ

1− gU = −km+
k

1− g (α− T )

(c) These are first-order differential equations.

(d) It is necessary to have the restriction g 6= 1.

4.

(a) The parameter values are β = 3, g = 1
3 , j =

3
4 and k =

1
2 . So, with reference to (16.37”),

we have

a1 = 2 a2 =
9
8 and b = 9

8m

The particular integral is b/a2 = m. The characteristic roots are complex, with h = −1
and v =

√
2
4 . Thus the general solution for π is
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π (t) = e−t

Ã
A5 cos

√
2

4
t+A6 sin

√
2

4
t

!
+m

Substituting this solution and its derivative into (16.41), and solving for p, we get

p (t) =
1

3
e−t[

³√
2A6 −A5

´
cos

√
2

4
t−

³√
2A5 +A6

´
sin

√
2

4
t] +m

The new version of (16.40) implies that U(t) = 1
9π −

1
3p+

1
18 .

Thus

U(t) =
1

9
e−t[

³
2A5 −

√
2A6

´
cos

√
2

4
t+

³√
2A5 + 2A6

´
sin

√
2

4
t] +

1

18
− 2
9
m

(b) Yes; yes.

(c) p = m; U = 1
18 −

2
9m

(d) Now U is functionally related to p. The long-run Phillips curve is no longer vertical, but

negatively sloped. The assumption g = 1 (the entire expected rate of inflation is built

into the actual rate of inflation) is crucial for the vertical long-run Phillips curve.

Exercise 16.6

1. Given y”(t) + ay0(t) + by = t−1, the variable term t−1 has successive derivatives involving

t−2, t−3, . . . , and giving an infinite number of forms. If we let

y(t) = B1t
−1 +B2t

−2 +B3t
−3 +B4t

−4 + . . .

There is no end to the y(t) expression. Thus we cannot use it as the particular integral.

2.

(a) Try yp in the form of y = B1t+B2. Then y0(t) = B1 and y”(t) = 0. Substitution yields

B1t + (2B1 +B2) = t, thus B1 = 1; moreover, 2B1 + B2 = 0, thus B2 = −2. Hence,
yp = t− 2.

(b) Try yp in the form of y = B1t
2 + B2t + B3. Then we have y0(t) = 2B1t + B2, and

y”(t) = 2B1. Substitution now yields B1t2 + (8B1 +B2) t + (2B1 + 4B2 +B3) = 2t2;

Thus B1 = 2, B2 = −16, and B3 = 60. Hence, yp = 2t2 − 16t+ 60.
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(c) Try yp in the form of y = Bet. Then y0(t) = y”(t) = Bet. Substitution yields 4Bet = et;

thus B = 1
4 . Hence, yp =

1
4e
t.

(d) Try yp in the form of y = B1 sin t+B2 cos t. Then we have y0 (t) = B1 cos t−B2 sin t, and
y” (t) = −B1 sin t−B2 cos t. Substitution yields (2B1 −B2) sin t+(B1 + 2B2) cos t = sin t;
Thus B1 = 2

5 , and B2 = −
1
5 . Hence, yp =

2
5 sin t−

1
5 cos t.

Exercise 16.7

1.

(a) Since an 6= 0, we have yp = b/an = 8/2 = 4.

(b) Since an = 0, but an−1 6= 0, we get yp = bt/an−1 = t
3 .

(c) an = an−1 = 0, but an−2 6= 0. We try the solution y = kt2, so that y0(t) = 2kt,

y”(t) = 2k, and y000(t) = 0. Substitution yields 18k = 1, or k = 1/18. Hence, yp = 1
18 t

2.

(d) We again try y = kt2, so that y”(t) = 2k and y(4)(t) = 0. Substitution yields 2k = 4, or

k = 2. Hence, yp = 2t2.

2.

(a) yp = 4/2 = 2. The characteristic roots are real and distinct, with values 1, −1, and 2.
Thus the general solution is

y(t) = A1e
t +A2e

−t +A3e
2t + 2

(b) yp = 0. The roots are −1, −3, and −3 (repeated). Thus

y(t) = A1e
−t +A2e

−3t +A3te
−3t

(c) yp = 8/8 = 1. The roots are −4, and −1 + i, and −1− i. Thus

y(t) = A1e
−4t + e−t (A2 cos t+A3 sin t) + 1
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3.

(a) There are two positive roots; the time path is divergent. To use the Routh theorem, we

have a0 = 1, a1 = −2, a2 = −1, a3 = 2, and a4 = a5 = 0. The first determinant is

|a1| = a1 = −2 < 0. Thus the condition for convergence is violated.

(b) All roots are negative; the time path is convergent. Applying the Routh theorem, we

have a0 = 1, a1 = 7, a2 = 15, a3 = 9, and a4 = a5 = 0. The first three determinants have

the values of 7, 96 and 864, respectively. Thus convergence is assured.

(c) All roots have negative real parts; the time path is convergent. To use the Routh theorem,

we have a0 = 1, a1 = 6, a2 = 10, and a3 = 8. The first three determinants have the

values 6, 52 and 416, respectively. Thus convergence is again assured.

4.

(a) Applying the Routh theorem, we have a0 = 1, a1 = −10, a2 = 27, and a3 = −18. The
first determinant is |a1| = −10 < 0. Thus the time path must be divergent.

(b) a0 = 1, a1 = 11, a2 = 34, and a3 = 24. The first three determinants are all positive

(having the value 11, 350, and 8400, respectively). Hence the path is convergent.

(c) a0 = 1, a1 = 4, a2 = 5, and a3 = −2. The first three determinants have the values 4, 22
and −44, respectively. Since the last determinant is negative, the path is not convergent.

5. The Routh theorem requires that

|a1| = a1 > 0

and

¯̄̄̄
¯̄a1 a3

a0 a2

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄a1 0

1 a2

¯̄̄̄
¯̄ = a1a2 > 0

With a1 > 0, this last requirement implies that a2 > 0, too.
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CHAPTER 17

Exercise 17.2

1. (a) yt+1 = yt + 7 (b) yt+1 = 1.3yt (c) yt+1 = 3yt − 9

2.

(a) Iteration yields y1 = y0 +1, y2 = y1 +1 = y0 +2, y3 = y2 +1 = y0 +3, etc. The solution

is yt = y0 + t = 10 + t

(b) Since y1 = αy0, y2 = αy1 = α2y0, y3 = αy2 = α3y0, etc., the solution is yt = αty0 = βαt

(c) Iteration yields y1 = αy0 − β, y2 = αy1 − β = α2y0 − αβ − β, y3 = αy2 − β = α3y0 −
α2β − αβ − β, etc. The solution is yt = αty0 − β(αt−1+αt−2 + . . .+ α+ 1| {z }

a total of t terms

)

3.

(a) yt+1 − yt = 1, so that a = −1 and c = 1. By (17.90), the solution is yt = y0 + ct = 10+ t.
The answer checks.

(b) yt+1−αyt = 0, so that a = −α, and c = 0. Assuming α 6= 1, (17.80) applies, and we have
yt = y0α

t = βαt. It checks. [ Assuming α = 1 instead, we find from (17.90) that yt = β,

which is a special case of yt = βαt.]

(c) yt+1 − αyt = −β, so that a = −α, and c = −β. Assuming α 6= 1, we find from (17.80)

that yt =
³
y0 +

β
1−α

´
αt − β

1−α . This is equivalent to the earlier answer, because we can

rewrite it as yt = y0αt − β
³
1−αt
1−α

´
= y0α

t − β(1 + α+ α2 + . . .+ αt−1).

4.

(a) To find yc, try the solution yt = Abt in the homogeneous equation yt+1 + 3yt = 0. The

result is Abt+1 + 3Abt = 0; i.e., b = −3. Hence yc = Abt = A(−3)t. To find yp, try the
solution yt = k in the complete equation, to get k + 3k = 4; i.e. k = 1. Hence yp = 1.

The general solution is yt = A(−3)t+1. Setting t = 0 in this solution, we get y0 = A+1.
The initial condition then gives us A = 3. The definite solution is yt = 3(−3)t + 1.

(b) After normalizing the equation to yt+1 − (12 )yt = 3, we can find yc = Abt = A(
1
2 )
t, and

yp = k = 6. Thus, yt = A( 12 )
t+6. Using the initial condition, we get A = 1. The definite

solution is yt = (12 )
t + 6.

117

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



(c) After rewriting the equation as yt+1 − 0.2yt = 4, we can find yc = A(0.2)t, and yp = 5.
Thus yt = A(0.2)t + 5. Using the initial condition, this solution can be definitized to

yt = −(0.2)t + 5.

Exercise 17.3

1. (a) Nonoscillatory; divergent.

(b) Nonoscillatory; convergent (to zero).

(c) Oscillatory; convergent.

(d) Nonoscillatory; convergent.

2. (a) From the expression 3(−3)t, we have b = −3 (region VII). Thus the path will oscillate
explosively around yp = 1.

(b) With b = 1
2 (region III), the path will show a nonoscillatory movement from 7 toward

yp = 6.

(c) With b = 0.2 (region III again), we have another convergent, nonoscillatory path.

But this time it goes upward from an initial value of 1 toward yp = 5.

3. (a) a = −13 , c = 6, y0 = 1. By (17.80), we have yt = −8(13 )t + 9 – nonoscillatory and

convergent.

(b) a = 2, c = 9, y0 = 4. By (17.80), we have yt = (−2)t +3 – oscillatory and divergent.

(c) a = 1
4 , c = 5, y0 = 2. By (17.80), we have yt = −2(−14 )t + 4 – oscillatory and

convergent.

(d) a = −1, c = 3, y0 = 5. By (17.90), we have yt = 5+3t– nonoscillatory and divergent

(from a moving equilibrium 3t).

Exercise 17.4

1. Substitution of the time path (17.120) into the demand equation leads to the time path of Qdt,

which we can simply write as Qt (since Qdt = Qst by the equilibrium condition:

Qt = α− βPt = α− β
¡
P0 − P̄

¢µ
− δ

β

¶t
− βP̄
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Whether Qt converges depends on the
³
− δ

β

´t
term, which determines the convergence of Pt

as well. Thus Pt and Qt must be either both convergent, or both divergent.

2. The cobweb in this case will follow a specific rectangular path.

3. (a) α = 18, β = 3, γ = 3, δ = 4. Thus P̄ = 21
7 = 3. Since δ > β, there is explosive

oscillation.

(b) α = 22, β = 3, γ = 2, δ = 1. Thus P̄ = 24
4 = 6. Since δ < β, the oscillation is

damped.

(c) α = 19, β = 6, γ = 5, δ = 6. Thus P̄ = 24
12 = 2. Since δ = β, there is uniform

oscillation.

4. (a) The interpretation is that if actual price Pt−1 exceeds (falls short of) the expected price

P ∗t−1, then P
∗
t−1 will be revised upward (downward) by a fraction of the discrepancy

Pt−1 − P ∗t−1, to form the expected price of the next period, P ∗t . The adjustment

process is essentially the same as in (16.34), except that, here, time is discrete, and

the variable is price rather than the rate of inflation.

(b) If η = 1, then P ∗t = Pt−1 and the model reduces to the cobweb model (17.10). Thus

the present model includes the cobweb model as a special case.

(c) The supply function gives P ∗t =
Qst+γ

δ , which implies that P ∗t−1 =
Qs,t−1+γ

δ . But

since Qst = Qdt = α− βPt, and similarly, Qs,t−1 = α− βPt−1, we have

P ∗t =
α+ γ − βPt

δ
and P ∗t−1 =

α+ γ − βPt−1
δ

Substituting these into the adaptive expectations equation, and simplifying and shift-

ing the time subscript by one period, we obtain the equation

Pt+1 −
µ
1− η − ηδ

β

¶
Pt =

η(α+ γ)

β

which is in the form of (17.6) with a = −
³
1− η − ηδ

β

´
6= −1, and c = η(α+γ)

β .
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(d) Since a 6= −1, we can apply formula (17.80) to get

Pt =

µ
P0 −

α+ γ

β + δ

¶µ
1− η − ηδ

β

¶t
+

α+ γ

β + δ

=
¡
P0 − P̄

¢µ
1− η − ηδ

β

¶t
+ P̄

This time path is not necessarily oscillatory, but it will be if
³
1− η − ηδ

β

´
is negative,

i.e., if β
β+δ < η.

(e) If the price path is oscillatory and convergent (region V in Fig. 17.1), we must have

−1 < 1 − η − ηδ
β < 0, where the second inequality has to do with the presence

of oscillation, and the first, with the question of convergence. Adding (η − 1), and
dividing throught by η, we have 1− 2

η < −
δ
β < 1−

1
η . Given that the path is oscillatory,

convergence requires 1 − 2
η < −

δ
β . If η = 1 (cobweb model), the stability-inducing

range for − δ
β is −1 < −

δ
β < 0. If 0 < η < 1, however, the range will become wider.

With η = 1
2 , e.g., the range becomes −3 < −

δ
β < −1.

5. The dynamizing agent is the lag in the supply function. This introduces Pt−1 into the model,

which together with Pt, forms a pattern of change.

Exercise 17.5

1. Because a = σ (β + δ)− 1 6= −1, by model specification.

2. (IV) 1− σ (β + δ) = 0. Thus σ = 1
β+δ .

(V) −1 < 1 − σ (β + δ) < 0. Subtracting 1, we get −2 < −σ (β + δ) < −1. Multiplying
by −1

β+δ , we obtain
2

β+δ > σ > 1
β+δ .

(VI) 1− σ(β + δ) = −1. Thus σ = 2
β+δ .

(VII) 1− σ(β + δ) < −1. Subtracting 1, and multiplying by −1
β+δ , we obtain σ > 2

β+δ .

3. With σ = 0.3, α = 21, β = 2, γ = 3, and δ = 6, we find from (16.15) that Pt = (P0 −
3)(−1.4)t + 3, a case of explosive oscillation.

4. The difference equation will become Pt+1 − (1− σβ)Pt = σ(α− k), with solution

Pt =

µ
P0 −

α− k
β

¶
(1− αβ)

t
+

α− k
β
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The term bt = (1− σβ)t is decisive in the time-path configuration:

Region b σ

III 0 < b < 1 0 < σ < 1
β

IV b = 0 σ = 1
β

V −1 < b < 0 1
β < σ < 2

β

VI b = −1 σ = 2
β

VII b < −1 σ > 2
β

[These results are the same as Table 17.2 with δ set equal to 0.] To have a positive P̄ , we must

ahve k < α; that is, the horizontal supply curve must be located below the vertical intercept

of the demand curve.

Exercise 17.6

1. No, yt and yt+1 can take any real values, and are continuous.

2. (a) Yes, L and R give two equilibria.

(b) Nonoscillatory, explosive downward movement.

(c) Damped, steady upward movement toward R.

(d) Damped, steady downward movement toward R.

(e) L is an unstable equilibrium; R is a stable one.

3. (a) Yes.

(b) Nonoscillatory explosive decrease.

(c) At first ther iwll be steady downward movement to the right, but as it approaches R,

oscillation will develop because of the negative slope of the phase line. Whether the

oscillation will be explosive depends on the steepness of the negatively-sloped segment

of the curve.

(d) Oscillation around R will again occur – either explosive, or damped, provided y0

maps to a point on the phase line higher than L.

(e) L is definitely unstable. The stability of R depends on the steepness of the curve.

4. (a) The phase line will be downward-sloping at first, but will become horizontal at the

level of Pm on the vertical axis.
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(b) Yes; yes.

(c) Yes.

5. From equation (17.17), we can write for the kink point:

P̂ =
α+ γ

β
− δ

β
k or

δ

β
k =

α+ γ

β
− P̂

It follows that

k =
β

δ

µ
α+ γ

β
− P̂

¶
=

α+ γ

β
− β

δ
P̂
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CHAPTER 18

Exercise 18.1

1. (a) b2 − b+ 1
2 = 0; b1, b2 =

1
2 (1±

√
1− 2) = 1

2 ±
1
2 i.

(b) b2 − 4b+ 4 = 0; b1, b2 = 1
2 (4±

√
16− 16) = 2, 2.

(c) b2 + 1
2b−

1
2 = 0; b1, b2 =

1
2 (−

1
2 ±

q
1
4 +

8
4 ) =

1
2 ,−1.

(d) b2 − 2b+ 3 = 0; b1, b2 = 1
2 (2±

√
4− 12) = 1±

√
2i.

2. (a) Complex roots imply stepped fluctuation. Since the absolute value of the roots is

R =
√
a2 =

p
1/2 < 1, it is damped.

(b) With repeated roots greater than one, the path is nonoscillatory and explosive.

(c) The roots are real and distinct; −1 is the dominant root. It’s negativity implies
oscillation, and its unit absolute value implies that oscillation will eventually become

uniform.

(d) The complex roots have an absolute value greater that 1: R =
√
3. Thus there is

explosive stepped fluctuation.

3. (a) a1 = −1, a2 = 1
2 , and c = 2. By (18.2), yp =

2
1/2 = 4.

(b) yp = 7/1 = 7 (c) yp = 5/1 = 5 (d) yp = 4/2 = 2

All of these represent stationary equilibria.

4. (a) a1 = 3, a2 = −7/4, and c = 9. yp =
9

1+3−7/4 = 4. With characteristic roots

b1, b2 =
1
2 (−3±

√
9 + 7) = 1

2 ,−
7
2 , the general solution is: yt = A1(

1
2 )
t+A2(− 72 )t+4.

Setting t = 0 in this solution, and using the initial condition y0 = 6, we have 6 =

A1 + A2 = 4; Thus A1 + A2 = 2. Next, setting t = 1, and using y1 = 3, we have

3 = 1
2A1 −

7
2A2 = −1. These results give us A1 = 3/2 and A2 = 1/2. Therefore, the

definite solution is

yt =
3

2

µ
1

2

¶t
+
1

2

µ
−7
2

¶t
+ 4
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(b) a1 = −2, a2 = 2, and c = 1. yp = 1
1−2+2 = 1. The roots are b1, b2 =

1
2 (2±

√
4− 8) =

1 ± i, giving us h = v = 1. Since R =
√
2, we find from (18.9) and Table 16.2 that

θ = π/4. The general solution is: yt = (
√
2)t(A5 cos

π
4 t+A6 sin

π
4 t)+1. Setting t = 0,

and using the condition y0 = 3, we obtain 3 = (A5 cos 0+A6 sin 0)+1 = A5+0+1; thus

A5 = 2. Next, setting t = 1, and using y1 = 4, we find 4 =
√
2(2 cos π4+A6 sin

π
4 )+1 =√

2( 2√
2
+ A6√

2
) + 1 = 2 +A6 + 1; thus A6 = 1. The definite solution is therefore

yt = (
√
2)t
³
2 cos

π

4
t+ sin

π

4
t
´
+ 1

(c) a1 = −1, a2 = 1/4, and c = 2. yp = 2
1−1+1/4 = 8. With roots b1, b2 =

1
2 (1±

√
1− 1) =

1/2, 1/2 (repeated), the general solution is yt = A3(1/2)t +A4t(1/2)t + 8. Using the

initial conditions, we find A3 = −4 and A4 = 2. Thus the definite solution is

yt = −4
µ
1

2

¶t
+ 2t

µ
1

2

¶t
+ 8

5. (a) The dominant root being −7/2, the time path will eventually be characterized by
explosive oscillation.

(b) The complex roots imply stepped fluctuation. Since R =
√
2 > 1, the fluctuation is

explosive.

(c) The repeated roots lie between 0 and 1; the time path is thus nonoscillatory and

convergent.

Exercise 18.2

1. (a) Subcase 1D (b) Subcase 3D

(c) Subcase 1C (d) Subcase 3C

2. (a) b1, b2 =
1
2

h
γ(1 + α)±

p
γ2(1 + α)2 − 4αγ

i
= 1

2 (3.6±
√
1.76) ≈ 2.46, 1.13. The path

should be divergent.

(b) b1, b2 =
1
2 (1.08±

√
0.466) ≈ 0.87, 0.21. The path should be convergent.

3. For Possibilities ii and iv, with either b1 = 1, or b2 = 1, we find (1 − b1)(1 − b2) = 0. Thus,

124

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



by (18.16), 1 − γ = 0, or γ = 1. for Possibility iii, with b1 > 1 and b2 a positive fraction,

(1− b1)(1− b2) is negative. Thus, by (18.16), 1− γ < 0, or γ > 1.

4. Case 3 is characterized by γ < 4α
(1+α)2 . If γ ≥ 1, then it follows that 1 <

4α
(1+α)2 . Multiplying

through by (1 + α)2, and subtracting 4α from both sides, we get 1− 2α+ α2 < 0, which can

be written as (1−α)2 < 0. But this inequality is impossible, since the square of a real number
can never be negative. Hence we cannot have γ ≥ 1 in Case 3.

Exercise 18.3

1. (a) Shifting the time subscripts in (18.23) forward one period, we get

(1 + βk) pt+2 − [1− j(1− g)] pt+1 + jβUt+1 = βkm+ j(α− T )

(b) Subtracting (18.23) from the above result, we have

(1 + βk) pt+2 − [2 + βk − j(1− g)] pt+1 + [1− j(1− g)] pt + jβ(Ut+1 − Ut) = 0

(c) Now we substitute (18.20) to obtain

(1 + βk) pt+2 − [1 + gj + (1− j)(1 + βk)] pt+1 + [1− j(1− g)] pt = jβkm

(d) When we divide through by (1 + βk), the result is (18.24).

2. Substituting (18.18) into (18.19) and collecting terms, we get

πt+1 − (1− j + jg)πt = j(α− T )− jβUt

Differencing this result yields [by (18.20)]

πt+2 − (2− j + jg)πt+1 + (1− j + jg)πt = −jβ(Ut+1 − Ut)

= jβkm− jβpt+1

A forward shifted version of (18.19) gives us jpt+1 = πt+2−(1−j)πt+1. Using this to eliminate

125

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



the pt+1 term in the preceding result, we get

(1 + βk)πt+2 − [1 + jg + (1− j)(1− kβ)]πt+1 + (1− j + jg)πt = jβkm

When normalized, this becomes a difference equation with the same constant coefficients and

constant terms as in (18.24).

3. Let g > 1. Then from (18.26) and (18.27), we still have b1 + b2 > 0 and (1− b1)(1− b2) > 0.
But in (18.260) we note that b1b2 can now exceed one. This would make feasible Possibility

v (Case 1), Possibility viii (Case 2), and Possibilities x and xi (Case 3), all of which imply

divergence.

4. (a) The first line of (18.21) is still valid, but its second line now becomes

Pt+1 − pt = βk(m− pt) + gj(pt − πt)

Consequently, (18.23) becomes

Pt+1 − [1− j(1− g)− βk] pt + jβUt = βkm+ j(α− T )

And (18.24) becomes

Pt+1 − [2− j(1− g)− βk] pt+1 + [1− j(1− g)− βk(1− j)]pt = jβkm

(b) No, we still have p̄ = m.

(c) With j = g = 1, we have a1 = βk − 2 and a2 = 1. Thus a21 T 4a2 iff (βk − 2) T 4 iff
βk T 4. The value of βk marks off the three cases from one another.

(d) With βk = 3, the roots are complex, with R =
√
a2 = 1; the path has stepped

fluctuation and is nonconvergent. With βk = 4, we have repeated roots, with b =

−12 (4− 2) = −1; the time path has nonconvergent oscillation. With βk = 5, we have

distinct real roots, b1, b2 = 1
2 (−3±

√
5) = −0.38,−2.62; the time path has divergent

oscillation.

Exercise 18.4

1. (a) ∆t = (t+ 1)− t = 1 (b) ∆2t = ∆(∆t) = ∆(1) = 0
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These results are similar to d
dt t = 1 and

d2

dt2 t = 0.

(c) ∆t3 = (t+ 1)3 − t3 = 3t2 + 3t+ 1.

This result is very much different from d
dt t

3 = 3t2.

2. (a) c = 1, m = 3, a1 = 2, and a2 = 1; (17.36) gives yp = 1
16 (3)

t.

(b) Formula (18.36) does not apply since m2 + a1m + a2 = 0. We try the solution

yt = Bt(6)
t, and obtain the equation B(t+2)(6)t+2−5B(t+1)(6)t+1−6Bt(6)t = 2(6)t.

This reduces to 42B = 2. Thus B = 1/21 and yp = 1
21 t(6)

t.

(c) After normalization, we find c = 1, m = 4, a1 = 0, and a2 = 3. By (18.36), we have

yp =
1
19 (4)

t.

3. (a) The trial solution is yt = B0 + B1t, which implies that yt+1 = B0 + B1(t + 1) =

(B0+B1)+B1t, and yt+2 = B0+B1(t+2) = (B0+2B1)+B1t. Substitution into the

difference equation yields 4B0 + 4B1t = t, so B0 = 0 and B1 = 1/4. Thus yp = t/4.

(b) This is the same equation as in (a) except for the variable term. With the same trial

solution, we get by substitution 4B0 + 4B1t = 4 + 2t. Thus B0 = 1 and B1 = 1/2,

and yp = 1 + t/2.

(c) The trial solution is yt = B0 +B1t+B2t2 (same as in Example 2). Substituting this

(and the corresponding yt+1 and yt+2 forms) into the equation, we get

(8B0 + 7B1 + 9B2) + (8B1 + 14B2)t+ 8B2t
2 = 18 + 6t+ 8t2

Thus B0 = 2, B1 = −1, B2 = 1, and yp = 2− t+ t2.

4. Upon successive differencing, the mt part of the variable term gives rise to expressions in the

form B(m)t, whereas the tn part leads to those in the form (B0+. . .+Bntn). The trial solution

must take both of these into account.

5. (a) The characteristic equation is b3 − b2/2 − b + 1/2 = 0, which can be written as

(b− 1/2)(b2 − 1) = (b− 1/2)(b+1)(b− 1) = 0. The roots are 1/2,−1, 1, and we have
yc = A1(1/2)

t +A2(−1)t +A3.
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(b) The characteristic equation is b3 − 2b2 − 5b/4 − 1/4 = 0, which can be written as

(b − 1/2)(b2 − 3b/2 + 1/2) = 0. The first factor gives the root 1/2; the second gives
the roots 1, 1/2,. Since the two roots are repeated, we must write yc = A1(1/2)

t +

A2t(1/2)
t +A3.

6. (a) Since n = 2, a0 = 1, a1 = 1/2 and a2 = −1/2, we have

∆1 =

¯̄̄̄
¯̄ 1 −1/2
−1/2 1

¯̄̄̄
¯̄ = 3

4
> 0, but ∆2 =

¯̄̄̄
¯̄̄̄
¯̄̄̄
1 0 −1/2 1/2

1/2 1 0 −1/2
−1/2 0 1 1/2

1/2 −1/2 0 1

¯̄̄̄
¯̄̄̄
¯̄̄̄ = 0

Thus the time path is not convergent.

(b) Since a0 = 1, a1 = 0 and a2 = −1/9, we have

∆1 =

¯̄̄̄
¯̄ 1 −1/9
−1/9 1

¯̄̄̄
¯̄ = 80

81
;∆2 =

¯̄̄̄
¯̄̄̄
¯̄̄̄
1 0 −1/9 0

0 1 0 −1/9
−1/9 0 1 0

0 −1/9 0 0

¯̄̄̄
¯̄̄̄
¯̄̄̄ = 6400

6561

The time path is convergent.

7. Since n = 3, there are three determinants as follows:

∆1 =

¯̄̄̄
¯̄ 1 a3

a3 1

¯̄̄̄
¯̄ ∆2 =

¯̄̄̄
¯̄̄̄
¯̄̄̄
1 0 a3 a2

a1 1 0 a3

a3 0 1 a1

a2 a3 0 1

¯̄̄̄
¯̄̄̄
¯̄̄̄

and

∆3 =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

1 0 0 a3 a2 a1

a1 1 0 0 a3 a2

a2 a1 1 0 0 a3

a3 0 0 1 a1 a2

a2 a3 0 0 1 a1

a1 a2 a3 0 0 1

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄
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CHAPTER 19

Exercise 19.2

1. The equation yt+2 + 6yt+1 + 9yt = 4 is a specific example of (19.1), with a1 = 6, a2 = 9, and

c = 4. When these values are inserted into (19.1’), we get precisely the system (19.4). The

solution is Example 4 of Sec.18.1 is exactly the same as that for the variable y obtained from

the system (19.4), but it does not give the time path for x, since the variable x is absent from

the single-equation formulation.

2. The characteristic equation of (19.2) can be written immediately as b3 + b2 − 3b+ 2 = 0. As

to (19.2’), the characteristic equation should be |bI +K| = 0; since K =

⎡⎢⎢⎢⎣
1 −3 2

−1 0 0

0 −1 0

⎤⎥⎥⎥⎦, we

have |bI +K| =

⎡⎢⎢⎢⎣
b+ 1 −3 2

−1 b 0

0 −1 b

⎤⎥⎥⎥⎦ = b3 + b2 − 3b+ 2 = 0 which is exactly the same.
3. (a) To find the particular solution, use (19.5’):⎡⎣ x

y

⎤⎦ = (I +K)−1d =
⎡⎣ 2 2

2 −1

⎤⎦−1 ⎡⎣ 24

9

⎤⎦ = 1

6

⎡⎣ 1 2

2 −2

⎤⎦⎡⎣ 24

9

⎤⎦ =
⎡⎣ 7

5

⎤⎦
To find the complementary functions, we first form the characteristic equation by using (19.9’):

|bI +K| =

¯̄̄̄
¯̄ b+ 1 2

2 b− 2

¯̄̄̄
¯̄ = b2 − b − 6 = 0 The roots b1 = 3 and b2 = −2 yield the follow-

ing sets of m and n values: m1 = −A1, n1 = 2A1; m2 = 2A2, n2 = A2. Thus we have

xc = −A1(3)t + 2A2(−2)t) and yc = 2A1(3)
t + A2(−2)t. Adding the particular solutions to

these complementary functions and definitizing the constants Ai, we finally get the time paths

xt = −3t + 4(−2)t + 7 and yt = 2(3)t + 2(−2)t + 5.

(b) The particular solutions can be found by setting all x’s equal to x and all y’s equal to y,

and solving the resulting equations. The answers are x = 6, and y = 3. If the matrix method

is used, we must modify (19.5’) by replacing I with J =

⎡⎣ 1 0

1 1

⎤⎦. Thus
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⎡⎣ x

y

⎤⎦ = (J +K)−1d =
⎡⎣ 0 −13
1 5

6

⎤⎦−1 ⎡⎣ −1
812

⎤⎦ = 1

6

⎡⎣ 5
2 1

−3 0

⎤⎦⎡⎣ −1
812

⎤⎦ =
⎡⎣ 6

3

⎤⎦
The characteristic equation,

|bJ +K| =

¯̄̄̄
¯̄ b− 1 −13

b b− 1
6

¯̄̄̄
¯̄ = b2 − 5

6b +
1
6 = 0, has roots b1 = 1

2 and b2 =
1
3 . These imply:

m1 = 2A1, n1 = −3A1; m2 = A2, n2 = −2A2. Thus the complementary functions are

xc = 2A1(
1
2 )
t + A2(

1
3 )
t) and yc = −3A1( 12 )t − 2A2(

1
3 )
t. Combining these with the particular

solutions, and definitizing the constants Ai, we finally obtain the time paths xt = −2(12 )t +
( 13 )

t + 6 and yt = 3( 12 )
t − 2(13 )t + 3.

4. (a) To find the particular integrals, we utilize (19.14):⎡⎣ x

y

⎤⎦ = (M)−1g =
⎡⎣ −1 −12

1 6

⎤⎦−1 ⎡⎣ −60
36

⎤⎦ = 1

6

⎡⎣ 6 12

−1 −1

⎤⎦⎡⎣ −60
36

⎤⎦ =
⎡⎣ 12

4

⎤⎦
The characteristic equation, |rI +M | =

¯̄̄̄
¯̄ r − 1 −12

1 r + 6

¯̄̄̄
¯̄ = r2+5r+6 = 0, has roots r1 = −2

and r2 = −3. These imply: m1 = −4A1, n1 = A1; m2 = −3A2, n2 = A2. Thus the

complementary functions are xc = −4A1e−2t−3A2e−3t and yc = A1e−2t+A2e−3t. Combining
these with the particular solutions, and definitizing the constants Ai, we find the time paths

to be x(t) = 4e−2t − 3e−3t + 12 and y(t) = −e−2t + e−3t + 4.
(b) The particular integrals are, according to (19.14),⎡⎣ x

y

⎤⎦ = (M)−1g =
⎡⎣ −2 3

−1 2

⎤⎦−1 ⎡⎣ 10

9

⎤⎦ =
⎡⎣ −2 3

−1 2

⎤⎦⎡⎣ 10

9

⎤⎦ =
⎡⎣ 7

8

⎤⎦
The characteristic equation, |rI +M | =

¯̄̄̄
¯̄ r − 2 3

−1 r + 2

¯̄̄̄
¯̄ = r2 − 1 = 0, has roots r1 = 1 and

r2 = −1. These imply: m1 = 3A1, n1 = A1; m2 = A2, n2 = A2. Thus the complementary

functions are xc = 3A1et+A2e−t and yc = A1et+A2e−t. Combining these with the particular

solutions, and definitizing the constants Ai, we find the time paths to be x(t) = 6et− 5e−t+7
and y(t) = 2et − 5e−t + 8.

5. The system (19.13) is in the format of Ju+Mv = g, and the desired matrix is D = −J−1M .

Since J−1 =

⎡⎣ 1 −2
0 1

⎤⎦ and M =

⎡⎣ 2 5

1 4

⎤⎦, we have D =

⎡⎣ 0 3

−1 −4

⎤⎦. The characteristic
130

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



equation of this matrix is |D − rI| = 0 or

¯̄̄̄
¯̄ −r 3

−1 −4− r

¯̄̄̄
¯̄ = r2 + 4r + 3 = 0, which checks

with (19.16’).

Exercise 19.3

1. Since dt =

⎡⎣ λ1

λ2

⎤⎦ δt, we have
⎡⎣ δ − a11 −a12
−a21 δ − a22

⎤⎦⎡⎣ β1

β2

⎤⎦ =
⎡⎣ λ1

λ2

⎤⎦. Thus β1 = 1
∆ [λ1(δ−

a22) + λ2a12] and β2 =
1
∆ [λ2(δ − a11) + λ1a21], where ∆ = (δ − a11)(δ − a22) − a12a21. It is

clear that the answers in Example 1 are the special case where λ1 = λ2 = 1.

2. (a) The key to rewriting process is the fact that δI =

⎡⎣ δ 0

0 δ

⎤⎦. The rest follows easily.
(b) Scalar: δ. Vectors: β, u. Matrices: I, A.

(c) β = (δI −A)−1u

3. (a) ρI+I−A =

⎡⎣ ρ 0

0 ρ

⎤⎦+
⎡⎣ 1 0

0 1

⎤⎦−
⎡⎣ a11 a12

a21 a22

⎤⎦ =
⎡⎣ ρ+ 1− a11 −a12

−a21 ρ+ 1− a22

⎤⎦. The
rest follows easily.

(b) Scalar: ρ. Vectors: β, λ. Matrices: I, A.

(c) β = (ρI + I −A)−1λ.

4. (a) With trial solution βiδ
t = βi(

10
12 )

t, we find from (19.22’) that β1 =
70
39 and β2 =

20
13 . So

x1p =
70
39 (

12
10 )

t and x2p = 20
13 (

12
10 )

t.

(b) From the equation

¯̄̄̄
¯̄ b− 3

10 − 4
10

− 3
10 b− 2

10

¯̄̄̄
¯̄] = b2 − 5

10b −
6
100 = 0, we find b1 = 6

10 ,b2 = −
1
10 .

These give us m1 = 4A1, n1 = 3A1; m2 = A2, n2 = −A2. Thus x1c = 4A1( 610 )t + A2(−
1
10 )

t

and x2c = 3A1( 610 )
t −A2(− 1

10 )
t

(c) Combining the above results, and utilizing the initial conditions, we find A1 = 1 and

A2 = −1. Thus the time paths are

x1,t = 4(
6

10
)t − (− 1

10
)t +

70

39
(
12

10
)t

x2,t = 3(
6

10
)t − (− 1

10
)t +

20

13
(
12

10
)t

5. (a) With trial solution βie
ρt = βie

t
10 , we find from (19.25’) that β1 =

17
6 and β2 =

19
6 . So

x1p =
17
6 e

t/10 and x2p = 19
6 e

t/10.
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(b) From the equation

¯̄̄̄
¯̄ r + 1− 3

10 − 4
10

− 3
10 r + 1− 2

10

¯̄̄̄
¯̄] = r2+ 15

10r+
44
100 = 0, we find r1 = −

4
10 ,r2 =

−1110 . These give us m1 = 4A1, n1 = 3A1; m2 = A2, n2 = −A2. Thus x1c = 4A1e
−4t/10 +

A2e
−11t/10 and x2c = 3A1e−4t/10 −A2e−11t/10

(c) Combining the above results, and utilizing the initial conditions, we find A1 = 1 and

A2 = 2. Thus the time paths are

x1,t = 4e
−4t/10 + 2e−11t/10 +

17

6
et/10

x2,t = 3e
−4t/10 − 2e−11t/10 + 19

6
et/10

6. (a) E,a and P are n× 1 column vectors; A is an n× n matrix.
(b) The interpretation is that, at any instant of time, an excess demand for the ith product

will induce a price adjustment to the extent of αi times the magnitude of excess demand.

(c) dP1dt = α1(a10 + a11P1 + a12P2 + . . .+ a1nPn)
...
dPn
dt = αn(an0 + an1P1 + an2P2 + . . .+ annPn)

(d) It can be verified that P 0 = αE. Thus we have

P 0 = α(a+AP )

or

P 0
(n×1)

− α
(n×n)

A
(n×n)

P
(n×1)

= α
(n×n)

a
(n×1)

7. (a) E1,t = a10 + a11P1,t + a12P2,t + . . .+ a1nPn,t)
...

En,t = an0 + an1P1,t + an2P2,t + . . .+ annPn,t)

Thus we have Et = a+APt.

(b) Since ∆Pi,t ≡ Pi,t+1 − Pi,t, we can write⎡⎢⎢⎢⎣
∆P1,t
...

∆Pn,t

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
P1,t+1 − P1,t

...

Pn,t+1 − Pn,t

⎤⎥⎥⎥⎦ = Pt+1(n×1)
− Pt
(n×1)

The rest follows easily.

(c) Inasmuch as Pt+1 − Pt = αEt = αa+ αAPt it follows that Pt+1 − IPt − αAPt = αa or

Pt+1 − (I + αA)Pt = αa
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Exercise 19.4

1. Cramer’s rule makes use of the determinants:

|A| = κβj |A1| = κβjµ |A2| = κj(α− T − µ(1− g))
Then we have :

π̄ = |A1|
|A| = µ, Ū = |A2|

|A| =
α−T−µ(1−g)

β

2. The first equation in (19.34) gives us

−3
4
(1− i)m1 = −

9

4
n1

Multiplying through by −49 we get

1

3
(1− i)m1 = n1

The second equation in (19.34) gives us

−1
2
m1 = −

3

4
(1 + i)n1

Multiplying through by −23 (1− i), and noting that (1 + i)(1− i) = 1− i2 = 2, we again get

1

3
(1− i)m1 = n1

3. With α− t = 1
6 , β = 2, h = 1/3, j = 1/4 and κ = 1/2, the system (19.28’) becomes⎡⎣ 1 0

0 1

⎤⎦⎡⎣ π0

U 0

⎤⎦+
⎡⎣ 1

6
1
2

−16 1

⎤⎦⎡⎣ π

U

⎤⎦ =
⎡⎣ 1

24

1
12 −

µ
2

⎤⎦
Setting π0 = U 0 = 0 and solving, we get the particular integrals π = µ and U = 1

12 −
µ
3 . Since

the reduced equation (19.30) now becomes⎡⎣ r + 1
6

1
2

−16 r + 1

⎤⎦⎡⎣ m

n

⎤⎦ =
⎡⎣ 0

0

⎤⎦
the characteristic equation is r2 + 7

6r +
1
4 = 0, with distinct real roots

r1, r2 =
−7±

√
13

12

. Using these values successively in the above matrix equation, we find

5−
√
13

6
m1 = n1
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and
5 +
√
13

6
m2 = n2

Thus the complementarity functions are⎡⎣ πc

Uc

⎤⎦ =
⎡⎣ A1

A1(
5−
√
(13)

6 )

⎤⎦ e−7+√1312 t +

⎡⎣ A2

A2(
5+
√
(13)

6 )

⎤⎦ e−7−√1312 t

which, when added to the particular integrals, give the general solutions.

4. (a) With α− T = 1
2 , β = 3, g = 1/2, j = 1/4 and κ = 1, the system (19.36) becomes⎡⎣ 1 0

−12 4

⎤⎦⎡⎣ πt+1

Ut+1

⎤⎦+
⎡⎣ −78 3

4

0 −1

⎤⎦⎡⎣ πt

Ut

⎤⎦ =
⎡⎣ 1

8

1
2 − µ

⎤⎦
Letting π = πt = πt+1 and U = Ut = Ut+1 and solving, we get the particular solutions

π = µ and U =
1

6
(1− µ)

. Since the reduced equation (19.38) now becomes⎡⎣ b− 7
8

3
4

−12b 4b− 1

⎤⎦⎡⎣ m

n

⎤⎦ =
⎡⎣ 0

0

⎤⎦
the characteristic equation is 4b2 − 33

8 b+
7
8 = 0, with distinct real roots

b1, b2 =
33±

√
193

64

. Using these values successively in the above matrix equation, we find the proportionality

relations
23−

√
193

48
m1 = n1

and
23 +

√
193

48
m2 = n2

Thus the complementarity functions are⎡⎣ πc

Uc

⎤⎦ =
⎡⎣ A1

A1(
23−
√
(193)

48 )

⎤⎦ (33 +p(193)
64

)t +

⎡⎣ A2

A2(
23+
√
(193)

48 )

⎤⎦ (33−p(193)
64

)t
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which, when added to the particular solutions, give the general solutions.

(b) With α− T = 1
4 , β = 4, g = 1, j = 1/4 and κ = 1, the system (19.36) becomes⎡⎣ 1 0

−1 5

⎤⎦⎡⎣ πt+1

Ut+1

⎤⎦+
⎡⎣ −1 1

0 −1

⎤⎦⎡⎣ πt

Ut

⎤⎦ =
⎡⎣ 1

16

1
4 − µ

⎤⎦
The particular solutions are π = µ and U = 1

16 . Since the reduced equation (19.38) now

becomes ⎡⎣ b− 1 1

−b 5b− 1

⎤⎦⎡⎣ m

n

⎤⎦ =
⎡⎣ 0

0

⎤⎦
the characteristic equation is 5b2 − 5b+ 1 = 0, with distinct real roots

b1, b2 =
5±
√
5

10

. Using these values successively in the above matrix equation, we find

5−
√
5

10
m1 = n1

and
5 +
√
5

10
m2 = n2

Thus the complementarity functions are⎡⎣ πc

Uc

⎤⎦ =
⎡⎣ A1

A1(
5−
√
5

10 )

⎤⎦ (5 +√5
10

)t +

⎡⎣ A2

A2(
5+
√
5

10 )

⎤⎦ (5−√5
10

)t

which, when added to the particular solutions, give the general solutions.

Exercise 19.5

1. By introducing a new variable x ≡ y0 (which implies that x0 ≡ y00), the given equation can be
rewritten as the system

x0 = f(x, y)

y0 = x

which constitutes a special case of (19.40).
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2. Since ∂x0

∂y = fy > 0, as y increases (moving northware in the phase space), x0 will increase

(x0 will pass through three stages in its sign, in the order: −, 0,+). This yields the same
conclusion as ∂x0

∂x . Similarly,
∂y0

∂x = gx > 0 yields the same conclusion as
∂y0

∂y .

3. N/A

4. (a) The x0 = 0 curve has zero slope, and the y0 = 0 curve has infinite slope. The equilibrium

is a saddle point.

(b) The equilibrium is also a saddle point.
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5. (a) The partial-derivative signs imply that the x0 = 0 curve is positively sloped, and the y0 = 0

curve is negatively sloped.

(b) A stable node results when a steep x0 = 0 curve is coupled with a flat y0 = 0 curve. A

stable focus results if a flat x0 = 0 curve is coupled with a steep y0 = 0 curve.
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Exercise 19.6

1. (a) The system has a unique equilibrium E = (0, 0). The Jacobian evaluated at E is

JE =

⎡⎣ ex 0

yex ex

⎤⎦
(0,0)

=

⎡⎣ 1 0

0 1

⎤⎦
Since |JE | = 1 and tr(JE) = 2, E is locally an unstable node.
(b) There are two equilibriums: E1 = (0, 0) and E2 = ( 12 ,−

1
4 ). The Jacobian evaluated at E1

and E2 yields

JE1 =

⎡⎣ 1 2

0 1

⎤⎦
and

JE2 =

⎡⎣ 1 2

1 1

⎤⎦
Since |JE1| = 1 and tr(JE1) = 2, E1 is locally an unstable node. The second matrix has a

negative determinant, thus E2 is locally a saddle point.

(c) A single equilibrium exists at (0, 0). And

JE =

⎡⎣ 0 −ey

5 −1

⎤⎦
(0,0)

=

⎡⎣ 0 −1
5 −1

⎤⎦
Since |JE | = 5 and tr(JE) = −1, E is locally an stable focus.
(d) A single equilibrium exists at (0, 0). And

JE =

⎡⎣ 3x2 + 6xy 3x2 + 1

1 + y2 2xy

⎤⎦
(0,0)

=

⎡⎣ 0 1

1 0

⎤⎦
Since |JE | = −1, E is locally a saddle point.

2. (a) The elements of Jacobian are signed as follows:

⎡⎣ 0 +

+ 0

⎤⎦. Thus its determinant is neg-
ative, implying that the equilibrium is locally a saddle point.

(b) The elements of Jacobian are signed as follows:

⎡⎣ 0 −
− 0

⎤⎦. Thus its determinant is neg-
ative, implying that the equilibrium is locally a saddle point.

138

Chiang/Wainwright: Fundamental Methods of Mathematical Economics  Instructor’s Manual 



(c) The elements of Jacobian are signed as follows:

⎡⎣ − +

− −

⎤⎦. Thus its determinant is pos-
itive and its trace negative, implying that the equilibrium is locally either a stable focus or a

stable node.

3. The differential equations are

p0 = h(1− µ)

µ0 = µ(p+ q −m(p))

, where m0(p) < 0. The equilibrium E occurs where p = p1 (where p1 = m(p1)− q is the value
of p that satisfies (19.56)) and µ = 1. The Jacobian is

JE =

⎡⎣ 0 −h
µ(1−m0(p)) p+ q −m(p)

⎤⎦
E

=

⎡⎣ 0 −h
1−m0(p1) 0

⎤⎦
Since |JE | = h(1−m0(p1)) > 0 and tr(JE) = 0, E is locally a vortex — the same conclusion as

in the phase diagram analysis.

4. (a) The x0 = 0 and y0 = 0 curves share the same equation y = −x. Thus the two curves
coincide, to give rise to a lineful of equilibrium points. Initial points off that line do not lead

to equilibrium.

(b) Since x0 = y0 = 0, neither x nor y can move. Thus any initial position can be considered
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as an equilibrium.
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CHAPTER 20

Exercise 20.2

1.

λ∗ = 1− t

µ∗ = (1− t)/2

y∗ =
t

2
− t

2

4
+ 2

2. The hamiltonian is H = 6y + λy + λu (linear in u). Thus to maximize H, we have u = 2 (if λ

is positive) and u = 0 (if λ is negative)

From λ0 = −∂H/∂y = −6 − λ, we find that λ(t) = ke−t − 6, but since λ(4) = 0 from the

transversality condition, we have k = 6e4, and

λ∗(t) = 6e4−t − 6

which is positive for all t in the interval [0,4]. Hence the optimal control is u∗(t) = 2. From

y0 = y + u = y + 2, we obtain y(t) = cet − 2. Since y(0) = 10, then c = 12, and

y∗(t) = 12et − 2

The optimal terminal state is

y∗(4) = 12e4 − 2

3. From the maximum principle, the system of differential equations are

λ0 = −λ

y0 = y +
a+ λ

2b

solving first for λ, we get λ(t) = c0e−t. Using λ(T ) = 0 yields c0 = 0. Therefore,

u(t) =
−a
2b

and

y(t) =
³
y0 +

a

2b

´
et − a

2b
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4. The maximum principle yields u = (y+λ)/2, and the following system of differential equations

λ0 = −(u− 2y)

y0 = u

with the boundary conditions y(0) = y0 and λ(T ) = 0. Substituting for u in the system of

equations yields ⎡⎣ λ0

y0

⎤⎦ =
⎡⎣ −12 3

2

1
2

1
2

⎤⎦⎡⎣ λ

y

⎤⎦
The coefficient matrix has a determinant of -1, the roots are ±1. For r1 = 1, the eigenvector
is ⎡⎣ −12 − 1 3

2

1
2

1
2 − 1

⎤⎦⎡⎣ m

n

⎤⎦ = 0
which yields m = 1 and n = 1.For r2 = −1, the eigenvector is m = 1 and n = −1/3. The
complete solutions are the homogeneous solutions,⎡⎣ λ(t)

y(t)

⎤⎦ =
⎡⎣ 1

1

⎤⎦ c1et +
⎡⎣ 1

−13

⎤⎦ c2et
From the transversality conditions we get

c1 =
x0e
−2T

1/3 + e−2T

c2 =
−x0

1/3 + e−2T

The final solution is

λ(t) =
x0

1/3 + e−2T
¡
et−2T − e−t

¢
y(t) =

x0
1/3 + e−2T

µ
et−2T +

1

3
e−t
¶

u(t) =
x0

1/3 + e−2T

µ
et−2T − 1

3
e−t
¶

5. N/A

6. λ∗ = 3e4−t − 3 µ∗ = 2 y∗ = 7et − 2
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