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1 Mathematical Appendix

1 Mathematical Appendix

1.1 Chapter A1

A1.7 Graph each of the following sets. If the set is convex, give a proof. If it is not
convex, give a counterexample.
Answer

(a) (x, y)|y = ex

This set is not convex.
Any combination of points would be outside the set. For example, (0, 1) and
(1, e) ∈ (x, y)|y = ex, but combination of the two vectors with t = 1

2
not: (1

2
, e+1

2
) /∈

(x, y)|y = ex.

(b) (x, y)|y ≥ ex

This set is convex.
Proof: Let (x1, y1), (x2, y2) ∈ S = (x, y)|y ≥ ex. Since y = ex is a continuous
function, it is sufficient to show that (tx1 + (1 − t)x2, ty1 + (1 − t)y2) ∈ S for any
particular t ∈ (0, 1). Set t = 1

2
. Our task is to show that

(
1
2
(x1 + x2),

1
2
(y1 + y2)

)
∈

S. 1
2

(y1 + y2) ≥ 1
2

(ex1 + ex2), since yi ≥ ex1 for i = 1, 2. Also,

1

2
(ex1 + ex2) ≥ e

1
2
(x1+x2 = e

x1
2 · e

x2
2

⇔ ex1 + ex2 ≥ 2e
x1
2 · e

x2
2

⇔ ex1 − 2e
x1
2 · e

x2
2 + ex2 ≥ 0⇔ (ex1 − ex2)2 ≥ 0.

(c) (x, y)|y ≥ 2x− x2; x > 0, y > 0
This set is not convex.
For example,

(
1
10
, 1
2

)
,
(
1 9
10
, 1
2

)
∈ S = (x, y)|y ≥ 2x− x2;x > 0, y > 0. However,(

1, 1
2

)
= 1

2

(
1
10
, 1
2

)
+ 1

2

(
1 9
10
, 1
2

)
/∈ S

(d) (x, y)|xy ≥ 1; x > 0, y > 0
This set is convex.
Proof: Consider any (x1, y1), (x2, y2) ∈ S = (x, y)|xy ≥ 1; x > 0, y > 0. For any
t ∈ [0, 1],

(tx1 + (1− t)x2)(ty1 + (1− t)y2) = t2x1y1 + t(1− t)(x1y2 + x2y1) + (1− t)2x2y2
> t2 + (1− t)2 + t(1− t)(x1y2 + x2y1), since xiyi > 1.

= 1 + 2t2 − 2t+ t(1− t)(x1y2 + x2y1)

= 1 + 2t(t− 1) + t(1− t)(x1y2 + x2y1)

= 1 + t(1− t)(x1y2 + x2y1 − 2) ≥ 1 iff x1y2 + x2y1 ≥ 0.

x1y2 + x2y1 = x1y1
y2
y1

+ x2y2
y1
y2
− 2 ≥ y2

y1
+
y1
y2
− 2 ≥ 0

y − 1− 2y1y2 + y2 ≥ 0

(y1 − y2)2 ≥ 0,

2



1 Mathematical Appendix

which is always true and therefore, (tx1 + (1 − t)x2, ty1 + (1 − t)y2) ∈ S which is
convex.

(e) (x, y)|y ≤ ln(x)
This set is convex.
Proof. Let (x1, y1) + (x2, y2) ∈ S. Then 1

2
(y1 + y2) ≤ (ln(x1) + ln(x2)).

S is convex

if⇒ 1

2

(
ln(x1) + ln(x2) ≤ ln(

1

2
x1 +

1

2
x2)

)
⇔ 1

2
ln(x1x2) ≤ ln(

1

2
x1 +

1

2
x2)

⇔ (x1x2)
1/2 ≤ (

1

2
x1 +

1

2
x2)

⇔ x1 − 2(x1x2)
1/2 + x2 ≥ 0

⇔
(
x
1/2
1 + x

1/2
2

)2
≥ 0

which is always true.

A1.40 Sketch a few level sets for the following functions: y = x1x2, y = x1 + x2 and
y = min[x1, x2].
Answer

6

- x1

x2

(a) y = x1x2

6

- x1

x2

@@

@
@
@

@
@
@

@@

(b) y = x1 + x2

6

- x1

x2

(c) y = min(x1, x2)

Figure 1: Sets to Exercise A1.40

A1.42 Let D = [−2, 2] and f : D → R be y = 4 − x2. Carefully sketch this function.
Using the definition of a concave function, prove that f is concave. Demonstrate that
the set A is a convex set.
Answer Proof of concavity: Derive the first and second order partial derivative:

∂y

∂x
= −2x

∂2y

∂x2
= −2

The first derivative is strictly positive for values x < 0 and negative for values x > 0.
The second order partial derivative is always less than zero. Therefore, the function is
concave.
Proof of convexity: The area below a concave function forms a convex set (Theorem

3



1 Mathematical Appendix

A1.13). Alternatively, from the definition of convexity the following inequality should
hold 4 − (tx1 + (1 − t)x2)2 ≥ t(4 − (x1)2) + (1 − t)(4 − (x2)2). Multiply out to get
4− (tx1 +x2− tx2)2 ≥ 4−x22 + t[(x1)2− (x2)2]. Again, the area below the function forms
a convex set.

6

-x

y

Figure 2: Graph to Exercise A1.42

A1.46 Consider any linear function f(x) = a · x + b for a ∈ Rn and b ∈ R.

(a) Show that every linear function is both concave and convex, though neither is strictly
concave nor strictly convex.
Answer The statement is true iff, for any x1,x2 ∈ Rn, t ∈ [0, 1], it is true that

f(tx1 + (1− t)x2) = tf(x1) + (1− t)f(x2).

Substituting any linear equation in this statement gives

f(tx1+(1−t)x2) = a[tx1+(1−t)x2]+b = tax1+(1−t)ax2+tb+(1−t)b = tf(x1)+(1−t)f(x2)

for all x1,x2 ∈ Rn, t ∈ [0, 1].

(b) Show that every linear function is both quasiconcave and quasiconvex and, for n > 1,
neither strictly so. (There is a slight inaccuracy in the book.)
Answer As it is shown in (a) that a linear function is concave and convex, it must also
be quasiconcave and quasiconvex (Theorem A1.19). More formally, the statement
is true iff, for any x1,x2 ∈ Rn (x1 6= x2) and t ∈ [0, 1], we have

f(tx1 + (1− t)x2) ≥ min[f(x1), f(x2)](quasiconcavity)

f(tx1 + (1− t)x2) ≤ max[f(x1), f(x2)](quasiconvexity)

Again by substituting the equation into the definition, we get

tf(x1) + (1− t)f(x2) ≥ min[f(x1), f(x2)]

tf(x1) + (1− t)f(x2) ≤ max[f(x1), f(x2)] ∀t ∈ [0, 1]

A1.47 Let f(x) be a concave (convex) real-valued function. Let g(t) be an increas-
ing concave (convex) function of a single variable. Show that the composite function,
h(x) = g(f(x)) is a concave (convex) function.
Answer The composition with an affine function preserves concavity (convexity). As-
sume that both functions are twice differentiable. Then the second order partial deriva-
tive of the composite function, applying chain rule and product rule, is defined as

h′′(x) = g′′ (f(x)) f ′(x)2 + g′ (f(x)) f ′′(x)2

4



1 Mathematical Appendix

For any concave function, ∇2f(x) ≤ 0, ∇2g(x) ≤ 0, it should hold ∇2h(x) ≤ 0. In
the case the two functions are convex: ∇2f(x) ≥ 0 and ∇2g(x) ≥ 0, it should hold
∇2h(x) ≥ 0.

A1.48 Let f(x1, x2) = −(x1 − 5)2 − (x2 − 5)2. Prove that f is quasiconcave.
Answer Proof: f is concave iff H(x) is negative semidefinite and it is strictly concave if
the Hessian is negative definite.

H =

[
−2 0
0 −2

]
zTH(x)z = −2z21 − 2z22 < 0, for z = (z1, z2) 6= 0

Alternatively, we can check the leading principal minors of H: H1(x) = −2 < 0 and
H2(x) = 4 > 0. The determinants of the Hessian alternate in sign beginning with a
negative value. Therefore, the function is even strictly concave. Since f is concave, it is
also quasiconcave.

A1.49 Answer each of the following questions “yes” or ”no“, and justify your answer.

(a) Suppose f(x) is an increasing function of one variable. Is f(x) quasiconcave?
Answer Yes, an increasing function of one variable is quasiconcave. Any convex
combination of two points on this function will be at least as large as the smallest of
the two points. Using the differential-based approach, f is quasiconcave, if for any
x0 and x1, f(x1) ≥ f(x0) ⇒ ∂f(x0)/∂x(x1 − x0) ≥ 0. This must be true for any
increasing function.

(b) Suppose f(x) is a decreasing function of one variable. Is f(x) quasiconcave?
Answer Yes, a decreasing function of one variable is quasiconcave. Similarly to (a),
f is quasiconcave if for any x0, x1 and t ∈ [0, 1], it is true that f(tx0 + (1− t)x1) ≥
min[f(x0), f(x1)].

(c) Suppose f(x) is a function of one variable and there is a real number b such that
f(x) is decreasing on the interval (− inf, b] and increasing on [b,+ inf). Is f(x)
quasiconcave?
Answer No, if f is decreasing on (− inf, b] and increasing on [b,+ inf) then f(x) is
not quasiconcave.
Proof: Let a < b < c, and let tb = c−b

c−a ∈ [0, 1], tba+ (1− tb)c = b. Given the nature
of f , f(b) < min[f(a), f(c)]. Then f(tba + (1 − tb)c) < min[f(a), f(c)], so f is not
quasiconcave.

(d) Suppose f(x) is a function of one variable and there is a real number b such that
f(x) is increasing on the interval (− inf, b] and decreasing on [b,+ inf). Is f(x)
quasiconcave?
Answer Yes.
Proof: Let a < b < c, for x ∈ [a, b], f(x) ≥ f(a) and for x ∈ [b, c], f(x) ≥ f(c).
Hence, for any x ∈ [a, c], f(x) ≥ min[f(a), f(c)].
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(e) You should now be able to come up with a characterization of quasiconcave func-
tions of one variable involving the words “increasing” and “decreasing”.
Answer Any function of one variable f(x) is quasiconcave if and only if is either con-
tinuously increasing, continuously decreasing or first increasing and later decreasing.

1.2 Chapter A2

A2.1 Differentiate the following functions. State whether the function is increasing,
decreasing, or constant at the point x = 2. Classify each as locally concave, convex, or
linear at the point x = 2.

(a) f(x) = 11x3 − 6x+ 8 f1 = 33x2 − 6

increasing locally convex

(b) f(x) = (3x2 − x)(6x+ 1) f1 = 54x2 − 6x− 1

increasing locally convex

(c) f(x) = x2 − 1

x3
f1 = 2x+

3

x4

increasing locally concave

(d) f(x) = (x2 + 2x)3 f1 = (6x+ 6)(x2 + 2x)2

increasing locally convex

(e) f(x) = [3x/(x3 + 1)]2 f1 = 18x
x3 − 3x2 + 1

(x3 + 1)3

increasing locally concave

(f) f(x) = [(1/x2 + 2)− (1/x− 2)]4 f1 =

(
4

x2
− 8

x3

)(
1

x2
− 1

x
+ 4

)3

increasing locally convex

(g) f(x) =

∫ 1

x

et
2

dt f1 = −ex2

decreasing locally convex

A2.2 Find all first-order partial derivatives.

(a) f(x1, x2) = 2x1 − x21 − x22
f1 = 2− 2x1 = 2(1− x1) f2 = −2x2

(b) f(x1, x2) = x21 + 2x22 − 4x2

f1 = 2x1 f2 = 4x2 − 4

6
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(c) f(x1, x2) = x31 − x22 − 2x2

f1 = 3x1 f2 = −2(x2 + 1)

(d) f(x1, x2) = 4x1 + 2x2 − x21 + x1x2 − x22
f1 = 4− 2x1 + x2 f2 = 2− 2x2 + x1

(e) f(x1, x2) = x31 − 6x1x2 + x32
f1 = 3x21 − 6x2 f2 = 3x22 − 6x1

(f) f(x1, x2) = 3x21 − x1x2 + x2

f1 = 6x1 − x2 f2 = 1− x1

(g) g(x1, x2, x3) = ln
(
x21 − x2x3 − x23

)
g1 =

2x1
x21 − x2x3 − x23

g2 =
−x3

x21 − x2x3 − x23
g3 =

−x2 − 2x3
x21 − x2x3 − x23

A2.4 Show that y = x21x2 + x22x3 + x23x1 satisfies the equation

∂y

∂x1
+

∂y

∂x2
+

∂y

∂x3
= (x1 + x2 + x3)

2 .

The first-order partial derivatives are ∂y/∂x1 = 2x1x2 + x23,
∂y/∂x2 = x21 + 2x2x3, and ∂y/∂x3 = x22 + 2x3x1. Summing them up gives

∂y

∂x1
+

∂y

∂x2
+

∂y

∂x3
= x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 = (x1 + x2 + x3)

2 .

A2.5 Find the Hessian matrix and construct the quadratic form, zTH(x)z, when

(a) y = 2x1 − x21 − x22

H =

[
−2 0
0 −2

]
zTH(x)z = −2z21 + 2 ∗ 0z1z2 − 2z22

(b) y = x21 + 2x22 − 4x2

H =

[
2 0
0 4

]
zTH(x)z = 2z21 + 2 ∗ 0z1z2 + 4z22

7
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(c) y = x31 − x22 + 2x2

H =

[
6x1 0
0 −2

]
zTH(x)z = 6x1z

2
1 − 2z22

(d) y = 4x1 + 2x2 − x21 + x1x2 − x22

H =

[
−2 1
1 −2

]
zTH(x)z = −2z21 + 2z1z2 − 2z22

(e) y = x31 − 6x1x2 − x32

H =

[
6x1 −6
−6 6x2

]
zTH(x)z = 6x1z

2
1 − 12z1z2 + 6x2z

2
2

A2.8 Suppose f(x1, x2) =
√
x21 + x22.

(a) Show that f(x1, x2) is homogeneous of degree 1.
f(tx1, tx2) =

√
(tx1)2 + (tx2)2 =

√
t2(x21 + x22) = t

√
x21 + x22.

(b) According to Euler’s theorem, we should have f(x1, x2) = (∂f/∂x1)x1+(∂f/∂x2)x2.
Verify this.

1 · f(x1, x2) =
x1√
x21 + x22

x1 +
x2√
x21 + x22

x2 =
x21 + x22√
x21 + x22

=
√
x21 + x22

A2.9 Suppose f(x1, x2) = (x1x2)
2 and g(x1, x2) = (x21x2)

3.

(a) f(x1, x2) is homogeneous. What is its degree?
f(tx1, tx2) = t4(x1x2)

2 k = 4

(b) g(x1, x2) is homogeneous. What is its degree?
g(tx1, tx2) = t9(x21x2)

3 k = 9

(c) h(x1, x2) = f(x1, x2)g(x1, x2) is homogeneous. What is its degree?
h(x1, x2) = (x31x

2
2)

5 h(tx1, tx2) = t25(x31x
2
2)

5 k = 25

8
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(d) k(x1, x2) = g (f(x1, x2), f(x1, x2)) is homogeneous. What is its degree?
k(tx1, tx2) = t36(x1x2)

18 k = 36

(e) Prove that whenever f(x1, x2) is homogeneous of degree m and g(x1, x2) is homoge-
neous of degree n, then k(x1, x2) = g (f(x1, x2), f(x1, x2)) is homogeneous of degree
mn.
k(tx1, tx2) = [tm (f(x1, x2), f(x1, x2))]

n k = mn

A2.18 Let f(x) be a real-valued function defined on Rn
+, and consider the matrix

H∗ =


0 f1 · · · fn
f1 f11 · · · f1n
...

...
. . .

...
fn fn1 · · · fnn

 .

This is a different sort of bordered Hessian than we considered in the text. Here, the
matrix of second-order partials is bordered by the first-order partials and a zero to
complete the square matrix. The principal minors of this matrix are the determinants

D2 =

∣∣∣∣ 0 f1
f1 f11

∣∣∣∣ , D3 =

∣∣∣∣∣∣
0 f1 f2
f1 f11 f12
f2 f21 f22

∣∣∣∣∣∣ , . . . , Dn = |H∗|.

Arrow & Enthoven (1961) use the sign pattern of these principal minors to establish the
following useful results:

(i) If f(x) is quasiconcave, these principal minors alternate in sign as follows: D2 ≤ 0,
D3 ≥ 0, . . . .

(ii) If for all x ≥ 0, these principal minors (which depend on x) alternate in sign
beginning with strictly negative: D2 < 0, D3 > 0, . . . , then f(x) is quasiconcave
on the nonnegative orthant. Further, it can be shown that if, for all x � 0, we
have this same alternating sign pattern on those principal minors, then f(x) is
strictly quasiconcave on the (strictly) positive orthant.

(a) The function f(x1, x2) = x1x2 + x1 is quasiconcave on R2
+. Verify that its principal

minors alternate in sign as in (ii).
Answer The bordered Hessian is

H∗ =

 0 x2 + 1 x1
x2 + 1 0 1
x1 1 0

 .

9
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The two principal minors are D2 = −(x2+1)2 < 0 and D3 = 2x1x2+2x1 ≥ 0. Which
shows that the function will be quasiconcave and will be strictly quasiconcave for
all x1, x2 > 0.

(b) Let f(x1, x2) = a ln(x1 + x2) + b, where a > 0. Is this function strictly quasiconcave
for x� 0? It is quasiconcave? How about for x ≥ 0? Justify.
Answer The bordered Hessian is

H∗ =

 0 a
x1+x2

a
x1+x2

a
x1+x2

−a
(x1+x2)2

−a
(x1+x2)2

a
x1+x2

−a
(x1+x2)2

−a
(x1+x2)2

 .

The two principal minors are D2 = −( a
x1+x2

)2 < 0 for x1, x2 > 0 and D3 = 0.
Which shows that the function can not be strictly quasiconcave. However, it can be
quasiconcave following (i). For x1 = x2 = 0 the function is not defined. Therefore,
curvature can not be checked in this point.

A2.19 Let f(x1, x2) = (x1x2)
2. Is f(x) concave on R2

+? Is it quasiconcave on R2
+?

Answer The bordered Hessian is

H∗ =

 0 2x1x
2
2 2x21x2

2x1x
2
2 2x22 4x1x2

2x21x2 4x1x2 2x21

 .

The two principal minors are D2 = −(2x1x2)
2 < 0 and D3 = 16x41x

4
2 ≥ 0. Which

shows that the function will be strictly quasiconcave. Strict quasiconcavity implies
quasioncavity.

A2.25 Solve the following problems. State the optimised value of the function at the
solution.
(a) minx1,x2 = x21 + x22 s.t. x1x2 = 1
x1 = 1 and x2 = 1 or x1 = −1 and x2 = −1, optimised value= 2
(b) minx1,x2 = x1x2 s.t. x21 + x22 = 1

x1 =
√

1/2 and x2 = −
√

1/2 or x1 = −
√

1/2 and x2 =
√

1/2, optimised value= −1/2
(c) maxx1,x2 = x1x

2
2 s.t. x21/a

2 + x22/b
2 = 1

x1 =
√
a2/3 and x2 =

√
2b2/3 or x2 = −

√
2b2/3, optimised value= 2ab2

33/2

(d) maxx1,x2 = x1 + x2 s.t. x41 + x42 = 1

x1 = 4
√

1/2 and x2 = 4
√

1/2, optimised value=
4
√

23 = 23/4

(e) maxx1,x2,x3 = x1x
2
2x

3
3 s.t. x1 + x2 + x3 = 1

x1 = 1/6 and x2 = 1/3 = 2/6 and x3 = 1/2 = 3/6, optimised value= 1/432 = 108/66

10



1 Mathematical Appendix

A2.26 Graph f(x) = 6 − x2 − 4x. Find the point where the function achieves its
unconstrained (global) maximum and calculate the value of the function at that point.
Compare this to the value it achieves when maximized subject to the nonnegativity
constraint x ≥ 0.
Answer This function has a global optimum at x = −2. It is a maximum as the second-
order partial derivative is less than zero. Obviously, the global maximum is not a solution
in the presence of a nonnegativity constraint. The constrained maximization problem is

L(x, z, λ) = 6− x2 − 4x+ λ(x− z)

The first order conditions and derived equations are:

∂L

∂x
= −2x− 4 + λ = 0

∂L

∂z
= −λ ≤ 0

∂L

∂λ
= x− z = 0

λ = x− z z = x λx = 0

If λ = 0, then x = −2 would solve the problem. However, it does not satisfy the non-
negativity constraint. If λ 6= 0, then x = 0. As the function is continuously decreasing
for all values x ≥ 0, it is the only maximizer in this range.

6

-
x

y

Figure 3: Graph to Exercise A2.26
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2 Consumer Theory

2 Consumer Theory

2.1 Preferences and Utility

1.6 Cite a credible example were the preferences of an ‘ordinary consumer’ would be
unlikely to satisfy the axiom of convexity.
Answer : Indifference curves representing satiated preferences don’t satisfy the axiom of
convexity. That is, reducing consumption would result in a higher utility level. Negative
utility from consumption of ‘bads’ (too much alcohol, drugs etc.) would rather result in
concave preferences.

1.8 Sketch a map of indifference sets that are parallel, negatively sloped straight lines,
with preference increasing northeasterly. We know that preferences such as these satisfy
Axioms 1, 2, 3, and 4. Prove the they also satisfy Axiom 5′. Prove that they do not
satisfy Axiom 5.
Answer : Definition of convexity (Axiom 5′): If x1 % x0, then tx1 + (1 − t)x0 % x0 for
all t ∈ [0, 1]. Strict convexity (Axiom 5) requires that, if x1 6= x0 and x1 % x0, then
tx1 + (1− t)x0 � x0 for all t ∈ [0, 1].
The map of indifference sets in the figure below represent perfect substitues. We know
that those preferences are convex but not stricly convex. Intuitively, all combinations
of two randomly chosen bundles from one indifference curve will necessarily lie on the
same indifference curve. Additionally, the marginal rate of substitution does not change
by moving from x0 to x1. To prove the statement more formally, define xt as convex
combination of bundles x0 to x1: xt = tx0 + (1 − t)x1. Re-writing in terms of single
commodities gives us:
xt = (tx01, tx

0
2) + ((1− t)x11, (1− t)x12). A little rearrangement and equalising the two

definitions results in the equality
tx0 + (1− t)x1 = (tx01 + (1− t)x11), tx02 + (1− t)x12). That is, the consumer is indifferent
with respect to the convex combination and the original bundles, a clear violation of
strict convexity.

12
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rx0
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Figure 4: Indifference sets to Exercise 1.8

1.9 Sketch a map of indifference sets that are parallel right angles that “kink” on the
line x1 = x2. If preference increases northeasterly, these preferences will satisfy Axioms
1, 2, 3, and 4’. Prove that they also satisfy Axiom 5’. Do they also satisfy Axiom 4?
Do they satisfy Axiom 5?
Answer : Convexity (Axiom 5′) requires that, if x1 % x0, then tx1 + (1 − t)x0 % x0 for
all t ∈ [0, 1].
Take any two vectors x0, x1 such that x0 ∼ x1. Given the nature of these preferences, it
must be true that min[x01, x

0
2] = min[x11, x

1
2]. For any t ∈ [0, 1] consider the point tx1+(1−

t)x2. If we can show that min[tx01 + (1− t)x02, tx11 + (1− t)x12] ≥ min[x01, x
0
2 = min[x11, x

1
2],

then we shown that these preferences are convex. min[tx01 + (1− t)x02, tx11 + (1− t)x12] ≥
min[tx01, tx

1
1] + min[(1 − t)x02,+(1 − t)x12] = min[x02, x

1
2] + t[min(x01, x

1
1) −min(x02, x

1
2)] =

min[x02, x
1
2]

Definition of strict monotonicity (Axiom 4): For all x0, x1 ∈ Rn
+, if x0 ≥ x1, then

x0 % x1, while if x0 � x1, then x0 � x1.
The map of indifference sets in the figure below represents perfect complements. Take
two points x0,x1 along one indifference curve. If x0 � x1, “preferences increase north-
easterly”, then x0 � x1. For any two vectors on the same indifference curve, that is
x0 ≥ x1, it follows x0 % x1. Therefore, the definition of strict monotonicity is satisfied
for these indifference sets.
Strict convexity (Axiom 5) requires that, if x1 6= x0 and x1 % x0, then tx1+(1−t)x0 � x0

for all t ∈ [0, 1].
Take any two points along the horizontal or vertical part of an indifference curve such
as (x01, x

0
2) and (x01, x

1
2), where x02 > x12. Any convex combination xt = x01, tx

0
2 + (1− t)x12

lies on the same indifference curve as x1 and x0. Therefore, it is not possible that
xt � tx0 + (1 − t)x1. That is, the consumer is indifferent with respect to the convex
combination and the original bundles, a clear violation of strict convexity.

13
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6

-
x1

x2

rx0

rx1

Figure 5: Indifference sets to Exercise 1.9

1.12 Suppose u(x1, x2) and v(x1, x2) are utility functions.

(a) Prove that if u(x1, x2) and v(x1, x2) are both homogeneous of degree r, then s(x1, x2) ≡
u(x1, x2) + v(x1, x2) is homogeneous of degree r.
Answer : Whenever it holds that tru(x1, x2) = u(tx1, tx2) and trv(x1, x2) = v(tx1, tx2)
for all r > 0, it must also hold that trs(x1, x2) ≡ u(tx1, tx2) + v(tx1, tx2) =
tru(x1, x2) + trv(x1, x2).

(b) Prove that if u(x1, x2) and v(x1, x2) are quasiconcave, then m(x1, x2) ≡ u(x1, x2) +
v(x1, x2) is also quasiconcave.
Answer : Forming a convex combination of the two functions u and v and comparing
with m(xt) satisfies the definition of quasiconcavity:

When u(xt) ≥ min
{
tu(x1) + (1− t)u(x2)

}
and

v(xt) ≥ min
{
tv(x1) + (1− t)v(x2)

}
so

m(xt) ≥ min
{
u(xt) + v(xt)

}
=
[
t(u(x1) + v(x1)) + (1− t)(u(x2) + v(x2))

]
.

2.2 The Consumer’s Problem

1.20 Suppose preferences are represented by the Cobb-Douglas utility function, u(x1, x2) =
Axα1x

1−α
2 , 0 < α < 1, and A > 0. Assuming an interior solution, solve for the Marshal-

lian demand functions.
Answer : Use either the Lagrangian or the equality of Marginal Rate of Substitution and
price ratio. The Lagrangian is

14



2 Consumer Theory

L = Axα1x
1−α
2 + λ(y − p1x1 − p2x2). The first-order conditions (FOC) are

∂L

∂x1
= αAxα−11 x1−α2 − λp1 = 0

∂L

∂x2
= (1− α)Axα1x

−α
2 − λp2 = 0

∂L

∂λ
= y − p1x1 + p2x2 = 0

By dividing first and second FOC and some rearrangement, we get either x1 = αx2p2
(1−α)p1 or

x2 = (1−α)p1x1
αp2

. Substituting one of these expressions into the budget constraint, results

in the Marshallian demand functions: x1 = αy
p1

and x2 = (1−α)y
p2

.

1.21 We’ve noted that u(x) is invariant to positive monotonic transforms. One com-
mon transformation is the logarithmic transform, ln(u(x)). Take the logarithmic trans-
form of the utility function in 1.20; then, using that as the utility function, derive the
Marshallian demand functions and verify that they are identical to those derived in the
preceding exercise (1.20).
Answer : Either the Lagrangian is used or the equality of Marginal Rate of Substitution
with the price ratio. The Lagrangian is
L = ln(A) + α ln(x1) + (1− α) ln(x2) + λ(y − p1x1 − p2x2). The FOC are

∂L

∂x1
=

α

x1
− λp1 = 0

∂L

∂x2
=

(1− α)

x2
− λp2 = 0

∂L

∂λ
= y − p1x1 + p2x2 = 0

The Marshallian demand functions are: x1 = αy
p1

and x2 = (1−α)y
p2

. They are exactly
identical to the demand functions derived in the preceding exercise.

1.24 Let u(x) represent some consumer’s monotonic preferences over
x ∈ Rn

+. For each of the functions F (x) that follow, state whether or not f also represents
the preferences of this consumer. In each case, be sure to justify your answer with either
an argument or a counterexample.
Answer :

(a) f(x) = u(x) + (u(x))3 Yes, all arguments of the function u are transformed equally
by the third power. Checking the first- and second-order partial derivatives reveals
that, although the second-order partial ∂

2f
∂x2i

= ∂2u
∂x2i

+6(u(x))( ∂u
∂xi

)2 is not zero, the sign

of the derivatives is always invariant and positive. Thus, f represents a monotonic
transformation of u.

15
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(b) f(x) = u(x)− (u(x))2 No, function f is decreasing with increasing consumption for
any u(x) < (u(x))2. Therefore, it can not represent the preferences of the consumer.
It could do so if the minus sign is replaced by a plus sign.

(c) f(x) = u(x) +
∑n

i=1 xi Yes, the transformation is a linear one, as the first partial
is a positive constant, here one, and the second partial of the transforming function
is zero. Checking the partial derivatives proves this statement: ∂f

∂xi
= ∂u

∂xi
+ 1 and

∂2f
∂x2i

= ∂2u
∂x2i

.

1.28 An infinitely lived agent owns 1 unit of a commodity that she consumes over her
lifetime. The commodity is perfect storable and she will receive no more than she has
now. Consumption of the commodity in period t is denoted xt, and her lifetime utility
function is given by

u(x0, x1, x2, . . .) =
∞∑
t=0

βt ln(xt), where 0 < β < 1.

Calculate her optimal level of consumption in each period.
Answer : Establish a geometric series to calculate her lifetime utility:

u = β0 ln(x0) + β ln(x1) + β2 ln(x2) + . . .+ βt ln(xt)

As β is less than one, this series approaches a finite value. To find the solution, multiply
the expression by β and subtract from the original equation [(1)-(2)].

βu = β1 ln(x0) + β2 ln(x1) + β3 ln(x2) + . . .+ βt+1 ln(xt)

u− βu = (1− β)u = ln(x0)− βt+1 ln(xt)

u =
ln(x0)− βt+1 ln(xt)

1− β
= ln(x0)

Thus, the consumer’s utility maximising consumption will be constant in every period.

2.3 Indirect Utility and Expenditure

1.30 Show that the indirect utility function in Example 1.2 is a quasi-convex function
of prices and income.
Answer : The indirect utility function corresponding to CES preferences is: v(p, y) =

y (pr1 + pr2)
−1/r, where r ≡ ρ/(ρ− 1).

There are several ways. First, using the inequality relationship, let pt = tp0 + (1− t)p1.
We need to show that the indirect utility function fulfills the inequality

y
(
ptr1 + ptr2

)−1/r ≤ max[y
(
p0r1 + p0r2

)−1/r
, y
(
p1r1 + p1r2

)−1/r
]

16
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which gives:

y
(
tr(p0r1 + p0r2 ) + (1− t)r(p1r1 + p1r2 )

)−1/r ≤ max[y
(
p0r1 + p0r2

)−1/r
, y
(
p1r1 + p1r2

)−1/r
].

Second, the bordered Hessian can be derived and their determinants checked. The
determinants will be all negative.

H =


0 p−1/r −pr−11 p−1/r−1y −pr−12 p−1/r−1y

p−1/r 0 p−1/r p−1/r

−pr−11 p−1/r−1y p−1/r yp−1/r−1pr−21 ((1− r)− rpr1p−1) (1 + r)pr−11 pr−12 p−1/r−2y
−pr−12 p−1/r−1y p−1/r (1 + r)pr−11 pr−12 p−1/r−2y yp−1/r−1pr−22 ((1− r)− rpr2p−1)


, where p ≡ (pr1 + pr2).

1.37 Verify that the expenditure function obtained from the CES direct utility function
in Example 1.3 satisfies all the properties given in Theorem 1.7.
Answer : The expenditure function for two commodities is e(p, u) = u (pr1 + pr2)

1/r where
r ≡ ρ/(ρ− 1).

1. Zero when u takes on the lowest level of utility in U .
The lowest value in U is u((0)) because the utility function is strictly increasing.
Consequently, 0(pr1 + pr2)

1/r = 0.

2. Continuous on its domain Rn
++ × U .

This property follows from the Theorem of Maximum. As the CES direct utility
function satisfies the axiom of continuity, the derived expenditure function will be
continuous too.

3. For all p >> 0, strictly increasing and unbounded above in u.
Take the first partial derivative of the expenditure function with respect to utility:
∂e/∂u = (pr1+pr2)

1/r. For all strictly positive prices, this expression will be positive.
Alternatively, by the Envelope theorem it is shown that the partial derivative of
the minimum-value function e with respect to u is equal to the partial derivative
of the Lagrangian with respect to u, evaluated at (x∗, λ∗), what equals λ. Un-
boundness above follows from the functional form of u.

4. Increasing in p.
Again, take all first partial derivatives with respect to prices: ∂e/∂pi = upr−1i (pr1 + pr2)

(1/r)−1,
what is, obviously, positive.

5. Homogeneous of degree 1 in p.
e(tp, u) = u ((tp1)

r + (tp2)
r)1/r = t1u (pr1 + pr2)

1/r

17
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6. Concave in p.
The definition of concavity in prices requires

t
[
u
(
p0
r
1 + p0

r
2

)1/r]
+ (1− t)

[
u
(
p1
r
1 + p1

r
2

)1/r] ≤ e(pt, u)

for pt = tp0 + (1− t)p1. Plugging in the definition of the price vector into e(pt, u)
yields the relationship

t
[
u
(
p0
r
1 + p0

r
2

)1/r]
+ (1− t)

[
u
(
p1
r
1 + p1

r
2

)1/r] ≤
u
(
t(p0

r
1 + p0

r
2) + (1− t)(p1r1 + p1

r
2)
)1/r

.

Alternatively, we can check the negative semidefiniteness of the associated Hessian
matrix of all second-order partial derivatives of the expenditure function. A third
possibility is to check (product rule!)

∂2e

∂p2i
= u

(
(r − 1)

pri (p
r
1 + pr2)

1/r

p21(p
r
1 + pr2)

− rp
2r
i (pr1 + pr2)

1/r

p2i (p
r
1 + pr2)

2

)
< 0 by r < 0.

Homogeneity of degree one, together with Euler’s theorem, implies that ∂2e/∂p2i pi =
0. Hence the diagonal elements of the Hessian matrix must be zero and the matrix
will be negative semidefinite.

7. Shephard’s lemma
∂e/∂u = (pr1 +pr2)

1/r what is exactly the definition of a CES-type Hicksian demand
function.

1.38 Complete the proof of Theorem 1.9 by showing that
xh(p, u) = x (p, e(p, u)).
Answer : We know that at the solution of the utility maximisation or expenditure min-
imisation problem e(p, u) = y and u = v(p, y). Substitute the indirect utility function
v into the Hicksian demand function gives xh(p, v(p, y)). As the new function is a
function of prices and income only, it is identical to the Marshallian demand function.
Furthermore, by replacing income by the expenditure function we get the expression
x (p, e(p, u)).

2.4 Properties of Consumer Demand

1.40 Prove that Hicksian demands are homogeneous of degree zero in prices.
Answer : We know that the expenditure function must be homogeneous of degree one
in prices. Because any Hicksian demand function equals, due to Shephard’s lemma,
the first partial derivative of the expenditure function and, additionally, we know that
the derivative’s degree of homogeneity is k-1. The Hicksian demand functions must be
homogeneous of degree 1− 1 = 0 in prices.

18
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1.43 In a two-good case, show that if one good is inferior, the other good must be
normal.
Answer : The Engel-aggregation in a two-good case is the product of the income elasticity
and the repsective expenditure share s1η1 + s2η2 = 1. An inferior good is characterised
by a negative income elasticity, thus, one of the two summands will be less than zero.
Therefore, to secure this aggregation, the other summand must be positive (even larger
one) and the other commodity must be a normal good (even a luxury item).

1.55 What restrictions must the αi, f(y), w(p1, p2), and z(p1, p2) satisfy if each of the
following is to be a legitimate indirect utility function?
Answer :
(a) v(p1, p2, p3, y) = f(y)pα1

1 p
α2
2 p

α3
3 The function f(y) must be continuous, strictly in-

creasing and homogeneous of degree 0−
∑
αi. Each of the exponents αi has to be less

than zero to satisfy v decreasing in prices. Furthermore, negative partial derivatives of
v with respect to each price are required to get positive Marshallian demand functions
by using Roy’s identity.
(b) v(p1, p2, y) = w(p1, p2)+z(p1, p2)/y The functions w and z must be continuous and de-
creasing in prices. Function z has to be homogeneous of degree one and w homogeneous
of degree zero: v(tp1, tp2, ty) = t0w(p1, p2)+(t1z(p1, p2))/(ty) = t0 (w(p1, p2) + z(p1, p2)/y).
To satisfy v increasing in income, z must be < 0.

1.60 Show that the Slutsky relation can be expressed in elasticity form as εij = εhij −
sjηi, where εhij is the elasticity of the Hicksian demand for xi with respect to price pj,
and all other terms are as defined in Definition 1.6. Answer : The Slutsky relation is
given by

∂xi
∂pj

=
∂xhi
∂pj
− xj

∂xi
∂y

.

Multiplying the total expression with y/y and pj gives

∂xi
∂pj

pj =
∂xhi
∂pj

pj −
pjxj
y

∂xi
∂y

y.

By assuming that xhi = xi before the price change occurs, we can divide all three terms
by xi. The result of this operation is

∂xi
∂pj

pj
xi

=
∂xhi
∂pj

pj
xi
− sj

∂xi
∂y

y

xi
= εij = εhij − sjηi

Additional exercise Relationship between utility maximisation and expenditure min-
imisation
Let’s explore the relationship with an example of a concrete utility function. A con-
sumer’s utility function is u = x

1/2
1 x

1/2
2 . For the derived functions see 1
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Start from the utility function Minimise expenditures s.t. u
and derive the Marshallian demand for x1 to find the Hicksian demand function

x1 = y/2p1 xh1 = u (p2/p1)
1/2

Plug in the respective demand functions to get the
indirect utility function expenditure function

v = y/(4p1p2)
1/2 e = u(4p1p2)

1/2

Substitute the expenditure function Substituting the indirect utility function
into the Marshallian demand function into the Hicksian demand function

to derive the Hicksian demand function to derive the Marshallian demand function
x1 = (u(4p1p2)

1/2)/2p1 = u(p2/p1)
1/2 xh1 = (p2/p1)

1/2y/(4p1p2)
1/2 = y/2p1

Invert v and replace y by u Invert e and replace u by v
to get the expenditure function to get the indirect utility function

v−1 = u(4p1p2)
1/2 e−1 = y(4p1p2)

−1/2

Check Roy’s identity Check Shephard’s lemma

−∂v/∂p1
∂v/∂y

= 2y(p1p2)1/2

4(p31p2)
1/2 = y/2p1

∂e
∂p1

= u4p2
2(4p1p2)1/2

= u(p2/p1)
1/2

Establish the Slutsky equation
∂x1
∂p2

= u
2(p1p2)1/2

− y
2p2
· 1
2p1

substitute u = v(p, y) into the substitution effect
∂x1
∂p2

= y
4p1p2

− y
4p1p2

= 0

Table 1: Relationship between UMP and EMP

2.5 Equilibrium and Welfare

4.19 A consumer has preferences over the single good x and all other goods m repre-
sented by the utility function, u(x,m) = ln(x) +m. Let the price of x be p, the price of
m be unity, and let income be y.

(a) Derive the Marshallian demands for x and m.
Answer The equality of marginal rate of substitution and price ratio gives 1/x = p.
Thus, the Marshallian demand for x is x = 1/p. The uncompensated demand for m
separates into two cases depending on the amount of income available:

m =

{
0 when y ≤ 1

y − 1 when y > 1.

(b) Derive the indirect utility function, v(p, y).
Answer Again, depending on the amount of income available there will be two
indirect utility functions:

v(p, y) =

{
ln
(

1
p

)
when m ≤ 1

y − 1− ln p when m > 1.
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(c) Use the Slutsky equation to decompose the effect of an own-price change on the
demand for x into an income and substitution effect. Interpret your result briefly.
Answer A well-known property of any demand function derived from a quasi-linear
utility function is the absence of the income effect. Which can be easily seen in the
application of the Slutsky equation:

∂xh

∂p
=
∂x

∂p
+ x

∂x

∂y

∂x

∂p
= − 1

p2
+ 0 · 1

p
=
∂xh

∂p
.

Therefore, the effect of an own-price change on the demand for x equals the substi-
tution effect.

(d) Suppose that the price of x rises from p0 to p1 > p0. Show that the consumer surplus
area between p0 and p1 gives an exact measure of the effect of the price change on
consumer welfare.
Answer The consumer surplus area can be calculated by integrating over the inverse
demand function of x:

CS =

∫ p1

p0

1

x
dx = ln(p1 − p0).

Calculating the change in utility induced by a price change gives:

∆v = v1(p1, y1)− v0(p1, y0) = y − 1− ln p1 − (y − 1− ln p0) = ln(p1 − p0).

As the two expressions are equal, the consumer surplus area gives an exact measure
of the effect of the price change on consumer welfare in the case of quasi-linear
preferences.

(e) Carefully illustrate your findings with a set of two diagrams: one giving the indif-
ference curves and budget constraints on top, and the other giving the Marshallian
and Hicksian demands below. Be certain that your diagrams reflect all qualitative
information on preferences and demands that you’ve uncovered. Be sure to consider
the two prices p0 and p1, and identify the Hicksian and Marshallian demands.
Answer See Figure 6. Please note, that Hicksian and Marshallian demands are
identical here.
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Figure 6: Graph to 4.19
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3 Producer Theory

3.1 Production

3.1 The elasticity of average product is defined as ∂APi(x)
∂xi

· xi
APi(x)

. Show that this is

equal to µi(x)− 1. Show that average product is increasing, constant, or decreasing as
marginal product exceeds, is equal to, or less than average product.
Answer : Applying quotient rule to get the first partial derivative of the average product
gives:

∂APi(x)

∂xi
=
xi∂f(x)/∂xi − f(x)

x2i
=
MP

xi
− AP

xi
=
MP − AP

xi

Multiply this term with the right part of the definition (xi/AP ) gives MP/AP − 1 what
is exactly µi(x)− 1.
The first part of the above definition equals the slope of the average product: (MP −
AP )/xi. It is straightforward to show that whenever marginal product exceeds the
average product the slope has to be positive. The average product reaches a maximum
when the marginal product equals average product. Finally, whenever MP < AP
average product is sloping downwards.

3.3 Prove that when the production function is homogeneous of degree one, it may be
written as the sum f(x) =

∑
MPi(x)xi, where MPi(x) is the marginal product of input

i.
Answer : The answer to this exercise gives a nice application of Euler’s Theorem. The
sum of the partial differentials of a function multiplied with the level of the respective
inputs is equal to the function times the degree of homogeneity k. The sum of all
marginal products multiplied with input levels gives the production function times k = 1.

3.7 Goldman & Uzawa (1964) have shown that the production function is weakly
separable with respect to the partition {N1, . . . , NS} if and only if it can be written in
the form

f(x) = g
(
f 1(x(1)), . . . , fS(x(S))

)
,

where g is some function of S variables, and, for each i, f i(x(i)) is a function of the
subvector x(i) of inputs from group i alone. They have also shown that the production
function will be strongly separable if and only if it is of the form

f(x) = G
(
f 1(x(1)) + · · ·+ fS(x(S))

)
,

where G is a strictly increasing function of one variable, and the same conditions on the
subfunctions and subvectors apply. Verify their results by showing that each is separable
as they claim.
Answer To show that the first equation is weakly separable with respect to the partitions,
we need to show that

∂[fi(x)/fj(x)]

∂xk
= 0 ∀i, j ∈ NS and k /∈ NS. Calculate the marginal
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products of the first equation for two arbitrary inputs i and j:

fi(x) =
∂g

∂fS
∂fS

∂xi
fj(x) =

∂g

∂fS
∂fS

∂xj
.

The marginal rate of technical substitution between these two inputs is

fi(x)

fj(x)
=

∂fS

∂xi
∂fS

∂xj

This expression is independent of any other input which is not in the same partition NS

and, therefore, the production function is weakly separable.

∂(fi/fj)

∂xk
= 0 for k /∈ NS

To show that the second equation is strongly separable we have to perform the same ex-
ercise, however, assuming that the three inputs are elements of three different partitions
i ∈ NS, j ∈ NT and k /∈ NS ∪NT . The marginal products of the two inputs i and j are:

fi(x) = G′
∂fS

(
x(S)

)
∂xi

fj(x) = G′
∂fT

(
x(T )

)
∂xj

.

The MRTS is:
fi(x)

fj(x)
=
∂fS/∂xi
∂fT/∂xj

.

It follows for k /∈ NS ∪NT

∂(fi/fj)

∂xk
= 0.

3.8 A Leontief production function has the form y = min {αx1, βx2} for α > 0 and
β > 0. Carefully sketch the isoquant map for this technology and verify that the
elasticity of substitution σ = 0, where defined.
Answer : Taking the total differential of the log of the factor ratio gives d ln (βx2/αx1) =
β/x2dx2 − α/x1dx1. However, the MRTS is not defined in the kinks as the function is
discontinuous. Along all other segments of the isoquants the MRTS is zero. Therefore,
the elasticity of substitution is only defined when the input ratio remains constant. In
this case, σ = 0.

3.9 Calculate σ for the Cobb-Douglas production function y = Axα1x
β
2 , where A >

0, α > 0 and β > 0.
Answer : The total differential of the log of the factor ratio gives
d ln(x2/x1) = β/x2dx2−α/x1dx1. The total differential of the marginal rate of technical
substitution gives

d ln

(
Aαxα−11 xβ2

Aβxα1x
β−1
2

)
= α/β(dx1/x1 − dx2/x2)
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6

-
x1

x2

Figure 7: Isoquant map of Leontief technology

Putting both parts together results in

σ =
β/x2dx2 − α/x1dx1
α/β(dx1/x1 − dx2/x2)

= 1

3.14 Let y = (
∑n

i=1 αix
ρ
i )

1/ρ
, where

∑
i αi = 1 and 0 6= ρ < 1. Verify that σij =

1/(1− ρ) for all i 6= j.
Answer Apply the definition of the elasticity of substitution.

σij =
∂ (ln(xj)− ln(xi))

∂ ln (fi(x)/fj(x))

=

1
xj
∂xj − 1

xi
∂xi

∂ ln

(
αix

ρ−1
i (

∑
i αix

ρ
i )

1/ρ−1

αjx
ρ−1
j (sumiαix

ρ
i )

1/ρ−1

)

=
−
(

1
xi
∂xi − 1

xj
∂xj

)
ρ− 1

(
1
xi
∂xi − 1

xj
∂xj

)
=
−1

ρ− 1
=

1

1− ρ

3.15 For the generalised CES production function, prove the following claims made in
the text.

y =

(
n∑
i=1

αix
ρ
i

)1/ρ

, where
n∑
i=1

αi = 1 and 0 6= ρ < 1
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(a)

lim
ρ→0

y =
n∏
i=1

xαii

Answer : Write the log of the CES production function ln y = 1/ρ ln
∑
αix

ρ
i . At ρ = 0,

the value of the function is indeterminate. However, using L’Hòpital’s rule we can write

lim
ρ→0

ln y =

∑
αix

ρ
i lnxi∑
αix

ρ
i

.

At ρ = 0 this expression turns into ln y =
∑
αi lnxi/

∑
αi. Because the denominator is

defined to be one, we can write the CES production at this point as y =
∏
xαii , what is

exactly the generalised Cobb-Douglas form.
(b)

lim
ρ→−∞

y = min {x1, . . . , xn}

Answer : Let us assume that αi = αj. Then the CES production function has the form

y = (xρ1 + xρ2)
1/ρ. Let us suppose that x1 = min(

∑
xi) and ρ < 0. We want to show

that x1 = limρ→−∞ (
∑
xρi )

1/ρ. Since all commodities xi are required to be nonnegative,
we can establish xρ1 ≤

∑
xρi . Thus, x1 ≥ (

∑
xρi )

1/ρ. On the other hand,
∑
xρi ≤ n ∗ xρ1.

Hence (
∑
xρi )

1/ρ ≥ n1/ρ ∗ x1. Letting ρ → −∞, we obtain limρ→−∞(
∑
xρi )

1/ρ = x1,
because limρ→−∞ n

1/ρ ∗ x1 = x1.

3.2 Cost

3.19 What restrictions must there be on the parameters of the Cobb-Douglas form in
Example 3.4 in order that it be a legitimate cost function?
Answer : The parameters A,w1, w2 and y are required to be larger than zero. A cost
function is required to be increasing in input prices. Therefore, the exponents α and β
must be larger zero. To fulfill the property of homogeneity of degree one in input prices,
the exponents have to add up to one. To secure concavity in input prices, the second
order partials should be less than zero. Thus, each of the exponents can not be larger
one.

3.24 Calculate the cost function and conditional input demands for the Leontief pro-
duction function in Exercise 3.8.
Answer This problem is identical to the expenditure function and compensated demand
functions in the case of perfect complements in consumer theory.
Because the production is a min-function, set the inside terms equal to find the optimal
relationship between x1 and x2. In other words, αx1 = βx2. For a given level of output
y, we must have y = αx1 = βx2. Rearrange this expression to derive the conditional
input demands:

x1(w, y) =
y

α
x2(w, y) =

y

β
.
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The cost function is obtained by substituting the two conditional demands into the
definition of cost:

c(w, y) = w1x1(w, y) + w2x2(w, y) =
w1y

α
+
w2y

β
.

3.27 In Fig. 3.85, the cost functions of firms A and B are graphed against the input
price w1 for fixed values of w2 and y.
(a) At wage rate w0

1, which firm uses more of input 1? At w′1? Explain?
Answer : Input demand can be obtained by using Shephard’s lemma, represented by the
slope of the cost function. Therefore, at w0

1 firm B demands more of factor 1 and at
wage rate w′1 firm A has a higher demand of that input.
(b) Which firm’s production function has the higher elasticity of substitution? Explain.
Answer : The first-order conditions for cost minimisation imply that the marginal rate
of technical substitution between input i and j equals the ratio of factor prices wi/wj. In
the two input case, we can re-write the original definition of the elasticity of substitution
as

σ =
d ln(x2/x1)

d ln(f1/f2)
=

d ln(x2/x1)

d ln(w1/w2)
=

x̂2 − x̂1
ŵ1 − ŵ2

,

where the circumflex denotes percentage change in input levels and input prices, respec-
tively. Because ŵ2 = 0, the denominator reduces to ŵ1, which is assumed to be the
same for both firms. In (a) we established that input demand at w0

1 is larger for firm B
compared to firm A. It follows that the numerator will be larger for B and, subsequently,
firm A’s production function shows the higher elasticity of substitution at w0

1.

3.29 The output elasticity of demand for input xi is defined as

εiy(w, y) ≡ ∂xi(w, y)

∂y

y

xi(w, y)
.

(a) Show that εiy(w, y) = φ(y)εiy(w, 1) when the production function is homothetic.
Given a homothetic production function, the cost function can be written as c(w, y) =
φ(y)c(w, 1). Shephard’s lemma states that the first order partial derivative with re-
spect to the price of input i gives demand of xi and to obtain the elasticity we need to
take take the second-order cross-partial derivative of the cost function with respect
to output. However, by Young’s theorem it is known that the order of differentiation
does not matter. Therefore, the following partial derivatives should be equal:

∂2c(w, y)

∂wi∂y
=
∂mc

∂wi
=
∂xi
∂y

.

Putting everything together gives:

εiy(w, y) =
∂2c

∂y∂wi

y

∂c
∂wi =

∂φ(y)

∂y
xi(w, 1)

y

φ(y)xi(w, 1)
=

1

φ′(y)
εiy(w, 1).

Unfortunately, this is not the result we should get.

27



3 Producer Theory

(b) Show that εiy = 1, for i = 1, . . . , n, when the production function has constant
returns to scale.
Answer For any production function with constant returns to scale, the conditional
input demand xi is linear in output level y (see Theorem 3.4). More formally, the
conditional input demand of a production function homogeneous of degree α > 0
can be written as xi(w, y) = y1/αxi(w, 1). By definition, a constant returns to scale
technology requires a production function homogeneous of degree 1. Therefore, the
conditional input demand reduces to xi(w, y) = yxi(w, 1). Calculating the output
elasticity of demand for input xi results in:

εiy(w, y) ≡ ∂xi(w, y)

∂y

y

xi(w, y)
= xi(w, 1)

y

yxi(w, 1)
= 1.

3.33 Calculate the cost function and the conditional input demands for the linear
production function y =

∑n
i=1 αixi.

Answer Because the production function is linear, the inputs can be substituted for
another. The most efficient input (i.e. input with the greatest marginal product/ price)
will be used and the other inputs will not be used.

xi(w, y) =

{
y
αi

if αi
wi
>

αj
wj
∀j 6= i, j ∈ {1, . . . , n}

0 if αi
wi
<

αj
wj

for at least one j 6= i, j ∈ {1, . . . , n}.

The cost function is then c(w, y) = wiy
αi

, where i is the input where

αi
wi

>
αj
wj
∀j 6= i, j ∈ 1, . . . , n.

3.3 Duality in production

Additional exercise (Varian (1992) 1.6) For the following “cost functions” indicate
which if any of properties of the cost function fails; e.g. homogeneity, concavity, mono-
tonicity, or continuity. Where possible derive a production function.

(a) c(w, y) = y1/2(w1w2)
3/4

Homogeneity: c(tw, y) = y1/2(tw1tw2)
3/4 = t3/2

(
y1/2(w1w2)

3/4
)

The function is not
homogeneous of degree one.
Monotonicity:

∂c(w, y)

∂w1

= 3/4y1/2w
−1/4
1 w

3/4
2 > 0

∂c(w, y)

∂w2

= 3/4y1/2w
3/4
1 w

−1/4
2 > 0

The function is monotonically increasing in input prices.
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Concavity:

H =

[
− 3

16
y1/2w

−5/4
1 w

3/4
2

9
16
y1/2w

−1/4
1 w

−1/4
2

9
16
y1/2w−1/41w

−1/4
2 − 3

16
y1/2w

3/4
1 w

−5/4
2

]
|H1| < 0

|H2| = −
72

256

y
√
w1w2

< 0

The function is not concave in input prices.
Continuity: Yes

(b) c(w, y) =
√
y(2w

1/2
1 w

1/2
2 )

The function satisfies all properties. The underlying technology is represented by
y = x1x2.

(c) c(w, y) = y(w1 +
√
w1w2 + w2)

The function satisfies all properties. The underlying technology is represented by

y = 2/3
(

(x1 + x2) +
√
x21 − x1x2 + x22

)
.

(d) c(w, y) = y(w1e
−w1 + w2)

The function is not homogeneous of degree one. Using Euler’s Theorem we get
the result

∑
∂c
∂wi

wi = y(w1e
−w1 + w2

1e
−w1 + w2) what is clearly not equal to the

original cost function. Alternatively, it becomes clear from the expression c(tw, y) =
ty(w1e

−tw1 + w2). The function is not monotonically increasing in input prices as
the first partial derivative with respect to w1 is only positive for prices less than one:
∂c/∂w1 = ye−w1(1−w1). Furthermore the function is only concave for prices w1 < 2,
what can be seen from the first determinant of the Hessian matrix: |H1| = y(w1 −
2)e−w1 .

(e) c(w, y) = y(w1 −
√
w1w2 + w2)

Monotonicity of the cost function holds only for a narrow set of input prices with
the characteristics 1/4w2 < w1 < 44. The conclusion can be derived from the first
partial derivatives and a combination of the two inequalities.

∂c

∂w1

= y

(
1− 1

2

√
w2

w1

)
positive for 1 >

1

2

√
w2

w1

∂c

∂w2

= y

(
1− 1

2

√
w1

w2

)
positive for 1 >

1

2

√
w1

w2

or 2 >

√
w2

w1

The function is not concave as the first partial derivatives with respect to both
input prices are negative and the second-order partial derivatives are positive. The
determinants of the Hessian matrix are |H1| > 0 and |H2| = 0. Thus, the function
is convex.

29



3 Producer Theory

(f) c(w, y) = (y + 1/y)
√
w1w2

The function satisfies all properties, except continuity in y = 0.

3.40 We have seen that every Cobb-Douglas production function,
y = Axα1x

1−α
2 , gives rise to a Cobb-Douglas cost function,

c(w, y) = yAwα1w
1−α
2 , and every CES production function, y = A (xρ1 + xρ2)

1/ρ, gives rise

to a CES cost function, c(w, y) = yA (xr1 + xr2)
1/r. For each pair of functions, show that

the converse is also true. That is, starting with the respective cost functions, “work
backward” to the underlying production function and show that it is of the indicated
form. Justify your approach.
Answer : Using Shephard’s lemma we can derive the conditional input demand func-
tions. The first step to solve this exercise for a Cobb-Douglas cost function is to derive
Shephard’s lemma and to rearrange all input demands in such a way to isolate the ratio
of input prices on one side, i.e. left-hand side of the expression. On the right-hand side
we have the quantity of input(s) and output. Second, equalise the two expressions and
solve for y. The result will be the corresponding production function.

x1 =
∂c(w, y)

∂w1

= αyA

(
w2

w1

)1−α
w2

w1

=

(
x1
Aαy

)1/(1−α)

x2 =
∂c(w, y)

∂w2

= (1− α)yA

(
w2

w1

)−α
w2

w1

=

(
x2

A(1− α)y

)−1/α
(Aαy)α

xα1
=

x1−α2

(A(1− α)y)1−α

y =
xα1x

1−α
2

αα(1− α)1−α
= axα1x

1−α
2 where a = (Aαα(1− α)1−α)−1

For the CES cost function a short-cut is used: Derive the conditional input demand
functions and substitute them into the production function.

x1 =
∂c(w, y)

∂w1

= yAwr−11 (wr1 + wr2)
1
r
−1

x2 =
∂c(w, y)

∂w2

= yAwr−12 (wr1 + wr2)
1
r
−1

y =

[
(Ay)ρ

w−r1 + w−r2

w−r1 + w−r2

]1/ρ
= Ay

3.4 The competitive firm

Additional exercise (Varian (1992) 1.21) Given the following production function

y = 100x
1/2
1 x

1/4
2 .

(a) Find c(w1, w2, y).
Answer : Starting from the equality of MRTS and ratio of factor prices, we get
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w1/w2 = 2x2/x1. Solving for one of the inputs, substituting back in the production
function and rearranging, we derive the conditional input demand functions:

x1 =
( y

100

)4/3(2w2

w1

)1/3

and

x2 =
( y

100

)4/3(2w2

w1

)−2/3
.

Substituting the two functions in the definition of costs, the resulting cost function
is:

c(w1, w2, y) =
( y

100

)4/3
w

2/3
1 (2w2)

1/3 +
( y

100

)4/3
w

1/3
2 w

2/3
1 2−2/3

=
(
21/3 + 2−2/3

) ( y

100

)4/3
w

2/3
1 w

1/3
2 .

(b) Find the effect of an increase in output on marginal cost, and verify that λ =
marginal cost.
Answer : Marginal costs are
MC = ∂c/∂y = 1

75
(y/100)1/3w

2/3
1 w

1/3
2

(
21/3 + 2−2/3

)
. Marginal costs are increasing

with output which is shown by
∂MC
∂y

= ∂2c
∂y2

=
(

1
150

)2
(y/100)−2/3w

2/3
1 w

1/3
2

(
21/3 + 2−2/3

)
. From the FOC of the La-

grangian we can derive that λ∗ =
w1x

1/2
1

50x
1/4
2

=
w2x

3/4
2

25x
1/2
1

. Substituting the conditional input

demand functions into one of those expressions gives

λ∗ =
w1

50

(
(y/100)4/3(2w2/w1)

1/3
)1/2 (

(y/100)4/3(2w2/w1)
−2/3)−1/4

=
21/3

50
(
y

100
)1/3w

2/3
1 w

1/3
2

When you solve the ratios, this expression will be equal to the marginal cost function.

(c) Given p = price of output, find x1(w, p), x2(w, p) and π(w, p). Use Hotelling’s
lemma to derive the supply function y(w, p).
Answer : By maximising π = py − c(w, y) the first-order condition is

∂π

∂y
=p− 1

75

( y

100

)1/3
w

2/3
1 w

1/3
2 (21/3 + 2−2/3) = 0

y =100

(
75

21/3 + 2−2/3

)3
(

p

w
2/3
1 w

1/3
2

)3

The first expression affirms the equality of price and marginal cost as the profit
maximum for any competitive firm. The last expression gives already the profit
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maximising supply function. Furthermore, the two following unconditional demand
functions emerge as solution of this optimisation problem:

x1 =

((
75p

21/3 + 2−2/3

)3

w−21 w−12

)4/3(
2w2

w1

)1/3

=

(
75

21/3 + 2−2/3

)4
21/3p4

w3
1w2

x2 =

((
75p

21/3 + 2−2/3

)3

w−21 w−12

)4/3(
w1

2w2

)2/3

=
75

21/3 + 2−2/3
p4

22/3w2
1w

2
2

.

The profit function is

π =

(
75

21/3 + 2−2/3

)3
100p4

w2
1w2

−
(

75p

21/3 + 2−2/3

)4(
21/3w1

w3
1w2

+
w2

22/3w2
1w

2
2

)
=

(
75

21/3 + 2−2/3

)3
p4

w2
1w2

(100− 75)

= 25

(
75

21/3 + 2−2/3

)3
p4

w2
1w2

.

Hotelling’s lemma confirms the output supply function shown above.

(d) Derive the unconditional input demand functions from the conditional input de-
mands.
Answer One, among several, way is to substitute the conditional input demands
into the definition of cost to obtain the cost function. Calculating marginal cost and
equalising with output price, gives, after re-arrangement, the output supply func-
tion. Substitution of the output supply function into the conditional input demands
results in the unconditional input demand functions. Using the example at hand,
and starting from the equality ∂c/∂y = p gives:

p =
1

75

(
21/3 + 2−2/3

) ( y

100

)1/3
w

2/3
1 w

1/3
2

y = 753
(
21/3 + 2−2/3

)−3
p3w−21 w−12 · 100

x1(w, p) =

(
75

21/3 + 2−2/3

)4

p4w−31 w−12

(e) Verify that the production function is homothetic.
Answer : The cost function is a factor of a function of output and input prices.
Similarly, the conditional input demand functions are products of a function of y
and input prices. Therefore, the possibility to separate the two functions multiplica-
tively and following Theorem 3.4 shows that the production function has to be a
homothetic function.

(f) Show that the profit function is convex.
Answer : In order to simply this step, I write the constant part of the profit function
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as K = 25
(

75
21/3+2−2/3

)3
Calculating the second-order partial derivatives of the profit

function with respect to all prices gives the following Hessian matrix. Be aware of
the doubble sign change after each derivative with respect to the input price (check
Theorem 3.8).

H =


12Kp2

w2
1w2

−8Kp3
w3

1w2

−4Kp3
w2

1w
2
2

−−8Kp3
w3

1w2
−−6Kp4

w4
1w2

−−2Kp4
w3

1w
2
2

−−4Kp3
w2

1w
2
2
−−2Kp4

w3
1w

2
2
−−2Kp4

w2
1w

3
2


The own supply effect is positive, the own demand effects are negative and all cross-
price effects are symmmetric. Checking the determinants becomes quite tedious.
Intuituively, it should become clear that they all have to be positive.

(g) Assume x2 as a fixed factor in the short run and calculate short-run total cost,
short-run marginal cost, short-run average cost and short-run profit function.
Short-run total cost are obtained by re-arranging the production function to get
x1 on the left-hand side and plugging in into the definition of cost c(w, y) =

(y/100)2w1/x
1/2
2 + w2x2. The first-partial derivative gives the short-run marginal

cost function smc = 1
50

y
100
w1/x

1/2
2 . The short-run average costs are equal to sac =

y
1002

w1/x
1/2
2 + w2x2

y
.

Final remark: Some answers might not be the most elegant ones from a mathemat-
ical perspective. Any comment and suggestion, also in case of obscurities, are highly
welcome.
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